Abstract:
The present invention relates to a cable bead, the method of constructing the cable bead and a tire constructed by a process incorporating the cable bead wherein the cable bead is formed with a bead core wound from a single filament of bead core wire having a rubber or elastomeric coating, first annular wrap of bead wrapping wire helically wound around the bead core, and a coating of lubricant or fatty acid disposed about the bead core.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomers comprises: a core steel filament (12) with a core steel filament diameter dc and coated with a polymer (14); six intermediate steel filaments (16) with an intermediate steel filament diameter di smaller than or equal to the core steel filament diameter dc; these intermediate steel filaments (16) are twisted around the core steel filament (12); ten or eleven outer steel filaments (18) with an outer steel filament diameter do smaller than or equal to the intermediate steel filament diameter dl; these outer steel filaments (18) are twisted around the intermediate steel filaments (16), the outer steel filaments (18) are preformed in order to allow rubber penetration inside the core (10). The core steel filament (12), the intermediate steel filaments (16) and the outer steel filaments (18) all have a tensile strength at least 2600 MPa. The cord (10) has an outer diameter D according to following formula: D≦dc+2×di+2×do+0.1 wherein all diameters are expressed in millimeter (mm).
Abstract:
A steel cord comprises a core with one or more core steel filaments and further comprises a first layer of intermediate steel filaments twisted around the core, and a second layer of second steel filaments twisted around the first layer. At least one of the intermediate steel filaments is individually coated by means of a polymer with a minimum thickness of 0.010 mm. The polymer reduces the fretting between the coated intermediate steel filaments and the other steel filaments and makes the steel cord suitable for reinforcement of carcass plies of a tire.
Abstract:
A coated metal reinforcement element for polymeric or elastomeric materials comprises a coating of: a polymer or prepolymer compatible with and co-polymerizable, co-vulcanizable or crosslinkable with said polymeric or elastomeric material to be reinforced, and bearing functional groups; either covalently bonding to the metal surface of said reinforcement element; or forming covalent bonds with the outward directed first functional groups of a mono-or multimolecular layer of a bifunctional adhesion promotor intercalated between said metal by its second functional groups. A method for the coating includes a one step and a two step procedure.
Abstract:
A metal rope (10) comprises wires (16, 18). The wires (16, 18) have a surface of stainless steel. At least those wires (18) exposed to the surface of the rope (10) are coated with a transparent polymer (22) on the stainless steel. The transparent polymer (22) is selected from the group consisting of thermoplastic polyesters, polyimides, polyamides and polyphtalamides, or a copolymer thereof. The metal rope (10) can be an element of a fabric, such as a woven (144) or knitted structure (150). The metal rope (10) be used in architectural, building and decorative applications.
Abstract:
The present invention relates to a cable bead, the method of constructing the cable bead and a tire constructed by a process incorporating the cable bead wherein the cable bead is formed with a bead core wound from a single filament of bead core wire having a rubber or elastomeric coating, first annular wrap of bead wrapping wire helically wound around the bead core, and a coating of lubricant or fatty acid disposed about the bead core.
Abstract:
Process for treating a body of steel to promote its adherence to a composition which includes at least a rubber, containing the following points:a body at least the surface of which is of stainless steel is used, this steel containing at least 0.02% and at most 0.2% carbon, at least 3% and at most 20% nickel, at least 12% and at most 28% chromium, the sum of the nickel and the chromium being at least equal to 20% and at most equal to 35%, all of these percentage values being by weight; the structure of the steel includes at least 20% by volume of martensite and is without austenite or it comprises less than 80% thereof by volume;the surface of the body is activated and then treated with at least one starting silane so that it is covered with a film constituted only, or substantially only, of one or more silanes, in such a manner that this surface treated in this way can be placed directly in contact with the composition.Articles comprising a rubber composition and a metal body which has been treated in accordance with the process of the invention, such articles being for instance tires.
Abstract:
Process for treating a body of steel to promote its adherence to a composition which includes at least a rubber, containing the following points:a body at least the surface of which is of stainless steel is used, this steel containing at least 0.02% and at most 0.2% carbon, at least 3% and at most 20% nickel, at least 12% and at most 28% chromium, the sum of the nickel and the chromium being at least equal to 20% and at most equal to 35%, all of these percentage values being by weight; the structure of the steel includes at least 20% by volume of martensite and is without austenite or it comprises less than 80% thereof by volume;the surface of the body is activated and then treated with at least one starting silane so that it is covered with a film constituted only, or substantially only, of one or more silanes, in such a manner that this surface treated in this way can be placed directly in contact with the composition.Articles comprising a rubber composition and a metal body which has been treated in accordance with the process of the invention, such articles being for instance tires.
Abstract:
A composite abrasive filament, including at least one preformed core at least partially coated with a hardened, abrasive-filled thermoplastic elastomer, exhibits increased abrading life over previously known abrasive filaments. Also disclosed are methods of making such filaments and using such filaments in article form to abrade a variety of workpieces.
Abstract:
A composite rope obtained by process comprising, impregnating a multifilament with epoxy resin and half-setting the resin to form a prepreg, twisting the plural prepregs together to form a primarily-twisted product, and wrapping the primarily-twisted product with a yarn or a porous tape. When it is wound round the primarily-twisted product, the yarn is closely wound at an angle substantially perpendicular to an axis of the primarily-twisted product. The method further comprises twisting the plural primarily-twisted products thus wrapped to form a secondarily-twisted product and then heating the secondarily-twisted product to completely set the resin impregnated.