Abstract:
A device (15) for slowing the movement of a drawer (2) urged by unidirectional thrust means (4), including a casing (17) fixable to a structure (S) and defining a chamber (18) filled with a viscous fluid, and a rotor (31). The rotor (31) includes a disc portion (32) and a shaft portion (33) protruding through the lid (21) of the casing (17) in such a way as it can be associated with the door (2). The base surface (23a) of the chamber (18) has a recess (51) operable to house a pivotable arm (52). The arm (52) has a pin portion (54) protruding into the chamber (18). The lower surface (62) of the disc portion (32) of the rotor (31) has a groove (70) for engaging the pin portion (54) of the arm (52). At one end (73), the groove (70) has a cam (76) dividing it into a return path (75) and a forward path (74) for the pin portion (54) so as to define a locking position for the rotor (31) in cooperation with the thrust means (4).
Abstract:
A door damper. The door damper includes a rotational shaft rotatably coupled to a door, a rotating resistance unit to generate rotating resistance to the rotational shaft, and a latching device latched to the rotational shaft and the door so as to allow the door and the rotational shaft to rotate together in a predetermined region. The latching device includes a free rotating section enabling free rotation of the door at an initial stage of opening the door, and a latching section enabling the latching device to be latched to the rotational shaft and the door at a final stage of opening the door so as to allow the door and the rotational shaft to rotate together. With the door damper, the door of electronic appliances can be smoothly opened without impact, and can be easily closed.
Abstract:
A rotary damper includes: a damper body mounted on a rotary shaft; a cam mechanism provided in the damper body to set a rotation pattern of the rotary shaft; a restoring force-accumulating member that accumulates a restoring force in accordance with rotation of the rotary shaft; and a rotation control member for controlling the rotation of the rotary shaft. The damper body is formed by setting a bottomed, cylindrical outer case having an opening at one end thereof and a bottomed, cylindrical inner case having an opening at one end thereof, face-to-face with each other and fitting the two with each other rotatably. The rotation control member is interposed between an inner periphery surface of the outer case and an outer periphery surface of the inner case on an outer periphery side of the damper body.
Abstract:
A damping mechanism for an opening and closing member that opens and closes an opening while changing a center of rotation has an arm with damped rotational speed to support a shaft part of the opening and closing member. A position of the shaft part with respect to the arm is changed along with the opening and closing operation of the opening and closing member by a guide member. The arm is urged toward an opening direction of the opening and closing member by a forcing member, and the opening and closing member is maintained in a closed state against the force of the forcing member by a locking member.
Abstract:
The invention relates to an actuating mechanism for a swivel-mounted actuating arm, especially for driving a lid of an item of furniture. Said mechanism comprises a spring device including a biased actuating element and a translatory mechanism which translates the movement of the actuating element into a swiveling movement of the actuating arm. Said translatory mechanism comprises at least one adjusting device for varying the translation ratio between the movement of the actuating element and the swiveling movement of the actuating arm.
Abstract:
The invention relates to a damping device for parts of furniture which are joined together by means of hinges and which can be pivoted in relation to each other. The housing contains a damping fluid in the cavity thereof and a resistance element which can be displaced relative to the damping fluid and connected to an actuating element protruding from the housing. During at least one part of the pivoting movement of both pieces of furniture, said actuating element is drivingly connected to the second piece of furniture and transfers the movement distributed to the second piece of furniture to the resistance element. The damping device is arranged in the region of at least one of the hinges which pivotally couples both pieces of furniture, and whereby either the damping housing and/or the actuating element engages with one of the mounting element of the corresponding hinges, at least during the damping process.
Abstract:
A damper device applies damping force to a movable body assembled on a fixed body. The damper device includes a damping part, a clutch case attached to one of the fixed body and the movable body in a state having received the damping part, and a rack part moving or relatively moving accompanying movement of the movable body. The damper device effectively operate the movable body.
Abstract:
A damper unit includes a reel having a spool on which a string is wound and a peripheral rack, and a base rotatably supporting the reel and having a holding portion. A spiral spring has an inner end connected to the holding portion and an outer end connected to the reel for accumulating a biasing force to cause the reel to rotate in a string winding direction in response to rotation of the reel in a string withdrawing direction. A damper device has a rotatable shaft integral with a gear. When the string is pulled out, the spiral spring is resiliently deformed to displace the reel to one side of the base to engage the peripheral rack of the reel with the gear of the damper device.
Abstract:
The provision of a rotational speed controller which is capable of increasing braking torque without a corresponding increase in size, and easily outputting braking torque assumed in the design, and minimizing variations in the braking torque. A casing 6 incorporates a shaft 7 inserted therein, a first rotor 8 rotated together with the shaft 7 in one piece, and a second rotor 10 rotated through the medium of the first rotor 8 and a planet gear 9. A first rotation mechanism for rotating the first rotor 8 is the shaft 7. A second rotation mechanism for rotating the second rotor 10 is a planetary gear mechanism operated in association with the rotation of the first rotor 8.
Abstract:
A control panel is retractably received within a recess in an appliance housing. The panel may be moved from an extended position wherein the control panel is exposed outside the cabinet to a retracted position wherein the control panel is enclosed within the recess. A spring urges the control panel to its extended position, and a latch is provided for releasably holding the control panel in its retracted position.