Abstract:
An imaging system includes a light source configured to illuminate a target and a camera configured to image light responsively emitted from the target and reflected from a spatial light modulator (SLM). The imaging system is configured to generate high-resolution, hyperspectral images of the target. The SLM includes a refractive layer that is chromatically dispersive and that has a refractive index that is controllable. The refractive index of the refractive layer can be controlled to vary according to a gradient such that light reflected from the SLM is chromatically dispersed and spectrographic information about the target can be captured using the camera. Such a system could be operated confocally, e.g., by incorporating a micromirror device configured to control a spatial pattern of illumination of the target and to modulate the transmission of light from the target to the camera via the SLM according to a corresponding spatial pattern.
Abstract:
In a multi-angle colorimeter, a light detecting portion 40 includes a main light receiving window disposed in a predetermined position on a main geometry plane, and first and second auxiliary light receiving windows disposed on a secondary geometry plane, and a main photoelectric conversion element for converting a main component light received by the main light receiving window in a light reflected from a measurement point into an electrical main signal and first and second auxiliary photoelectric conversion elements for converting first and second auxiliary component lights received by the first and second auxiliary light receiving windows in the reflected light respectively into first and second electrical auxiliary signals. A calculating portion corrects the electrical main signal based on the first and second electrical auxiliary signals to obtain color information about the measurement point.
Abstract:
The color measurement device and an image forming apparatus using the same includes a light source for irradiating a color measurement object with white light; a diffraction grating for dispersing the light reflected from the color measurement object; and a line sensor formed of multiple pixels that generate an electric signal corresponding to the intensity of the light dispersed by the diffraction grating, wherein the light source includes a light-emitting diode having a peak value of emission intensity in a wavelength zone of 380 nm to 420 nm, and a plural types of fluorescent members each having a peak value of fluorescence intensity in a wavelength zone of 420 nm to 730 nm.
Abstract:
A spectrocolorimeter comprises: a calculation unit configured to calculate wavelengths of dispersing light rays respectively received by a plurality of pixels included in a light detection unit using a correspondence relationship between pixels and wavelengths of a plurality of extremal value points in a profile of dispersing light rays detected by the light detection unit upon execution of colorimetry of a reference object to be measured, wherein when the calculation unit calculates the wavelengths of the dispersing light rays respectively received by the plurality of pixels, the calculation unit adjusts a colorimetry condition for respective extremal value points so that signals to be output from pixels corresponding to the plurality of extremal value points have output levels which are not less than a reference and are not saturated.
Abstract:
An exemplary method for measuring a refractive index of a substance being measured through an optical window, includes arranging the optical window in contact with the substance being measured, directing light to the interface of the optical window and substance being measured, where part of the light is absorbed by the substance being measured and part of it is reflected from the substance being measured to form an image, in which the location of the boundary of light and dark areas expresses a critical angle of the total reflection dependent on the refractive index of the substance being measured, and examining the formed image. Light is directed on a first structure and to desired angles on an interface between the optical window and substance being measured. Light reflected from the interface of the optical window and substance being measured is directed on a second structure.
Abstract:
The colorimetry apparatus includes a light source for emitting light to a surface of a detected object, a diffraction grating for spectrally separating, for each wavelength, the light emitted from the light source and reflected by the detected object, and a line sensor including multiple pixels, for receiving the light, which is spectrally separated by the diffraction grating, for the each wavelength by the multiple pixels. The light source and the line sensor are arranged on the common substrate.
Abstract:
Apparatus and methods for image processing using multiple imaging devices are provided. A first imaging device is configured to acquire a first image of a portion of a printed substrate and the second imaging device is configured to acquire a second image of a portion of the printed substrate. At least a portion of the first image and the second image are acquired from the same portion of the printed substrate at the same time. The first imaging device is configured to process color data from the first image using a first processing circuit of the first imaging device and the second imaging device is configured to process spatial information from the second image using a separate second processing circuit of the second imaging device.
Abstract:
An image processing apparatus for use with a printed substrate is disclosed. The image processing apparatus comprises an imaging device configured to receive light reflected from a portion of multiple patches of a colorbar on the printed substrate and configured to process color data from the light reflected from the portion of multiple patches of the colorbar.
Abstract:
The present invention discloses a light source with uniform chromaticity and luminance and a color sensor having the same. The light source includes multiple LED devices, a primary light guide plate assembly and a secondary light guide plate assembly. The chromaticity and luminance of light emitted from the LED devices are uniformized for the first time in the primary light guide plate assembly and then guided into the secondary light guide plate assembly for the secondary chromaticity and luminance uniformization, to thereby act as the light source of the color sensor. Therefore, the light source not only provides better chromaticity and luminance uniformization effects, but is further qualified as the standard illuminant D65, thereby enabling more precise color sensor inspection results.
Abstract:
A spectroscopic characteristics acquisition unit includes a light emitting unit to illuminate a measurement target; a lens array including lenses to receive reflected light reflected from the measurement target; a light blocking member having a pinhole array including openings; a focusing unit to focus light coming from the pinhole array; a diffraction unit to diffract the light to different directions depending on wavelength of light received by the focusing unit; and a light receiving unit to receive the reflected light diffracted by the diffraction unit. The light receiving unit includes a spectroscopic sensor array having spectroscopy sensors including pixels. Each of the lenses constituting the lens array corresponds to one of the openings of the pinhole array. The numerical aperture NA of the lens in the arrangement direction in the lens array satisfies the formula NA>sin(θmax) with respect to the maximum angle of view θmax of the focusing unit.