Abstract:
A method of performing a marine survey is provided. The method may include deploying, into a body of water, a towable streamer including one or more sensors for performing a subterranean survey. The method may also include receiving, from the sensors, information relating to the subterranean survey at a data storage device housed within a portion of the towable streamer. The method may also include storing the information within the data storage device.
Abstract:
Described is an improved optical fiber cable specially adapted for seismic sensing. Compared with standard optical fiber cable, this improved optical fiber cable is reduced in size, lighter, and more flexible. These characteristics make the optical fiber cable more robust for reusable applications. Due to modifications in the design of the optical fibers, the size and weight of the seismic sensing cable may be substantially reduced. That allows longer lengths of seismic sensing cable, and more seismic sensor boxes, to be reeled on a given sized reel, and makes deployment of the seismic sensing cable faster, easier, and less expensive. A preferred cable design for reaching these objectives comprises multiple optical fibers, of a design just described, encased in a dual-layer optical fiber buffer encasement of acrylate resin.
Abstract:
A seismic cable and a modular seismic system including at least one such cable and also a method for seismic surveying using the seismic cable comprising means for receiving and transmitting seismic data from hydrophones in the seismic cable.
Abstract:
A seismic cable and a modular seismic system including at least one such cable and also a method for seismic surveying using the seismic cable comprising means for receiving and transmitting seismic data from hydrophones in the seismic cable.
Abstract:
The invention relates to a support module 20 for an acoustic underwater antenna 4 having at least one electroacoustic and/or optoacoustic transducer element 32, wherein the support module 20 has a shaped piece, which is composed of at least two parts, for accommodating the transducer elements 32. The shaped piece has a central axial opening 38 for a traction cable to pass through and has at least one releasable connection between the parts of the shaped piece for opening or closing the support module 20. The invention also relates to an acoustic underwater antenna 4, in particular a towed antenna 4, having at least one above-described support module 20, and also to a corresponding method for attaching a support module 20 of this kind to the traction cable of said underwater antenna 4.
Abstract:
Sensors used in mapping strata beneath a marine body and/or structures on a marine body floor are described, such as in a flexible buoyancy adjustable towed array. A first sensor is a traditional acoustic sensor or a novel acoustic sensor using a piezoelectric sensor mounted with a thin film separation layer of flexible microspheres on a rigid substrate. Additional non-acoustic sensors are optionally mounted on the rigid substrate for generation of output used to reduce noise observed by the acoustic sensors. Combinations of acoustic, non-acoustic, and motion sensors co- located in rigid streamer housing sections are provided, which reduce noise associated with different sensor locations and/or localized turbulence.
Abstract:
Sensors used in mapping strata beneath a marine body are described, such as used in a flexible towed array. A first sensor is a motion sensor including a conductive liquid in a chamber between a rigid tube and a piezoelectric motion film circumferentially wrapped about the tube. A second sensor is a traditional acoustic sensor or a novel acoustic sensor using a piezoelectric sensor mounted with a thin film separation layer of flexible microspheres on a rigid substrate. Additional non-acoustic sensors are optionally mounted on the rigid substrate for generation of output used to. reduce noise observed by the acoustic sensors. Combinations of acoustic, non-acoustic, and motion sensors co-located in rigid streamer housing sections are provided.
Abstract:
A distributed optical acoustic sensor is provided along a structure in a body of water. The distributed optical acoustic sensor is used to detect acoustic waves generated by at least one acoustic source for positioning of at least one object in relation to the structure.
Abstract:
Some embodiments of the disclosed invention include a method for acquiring marine seismic data using solid streamers in a curved pattern. Streamers can be towed in a curved pattern within a body of water. While being towed in the curved patter the source may be fired and response data can be collected by the streamers as they are towed through the water in the curved/circular pattern. These streamers can be solid streamers and can be filled with a gel like substance. Moreover, the streamers can be placed at various known depths within the body of water.
Abstract:
A technique includes receiving data indicative of non-uniformly spaced samples of particle motion wavefield acquired by particle motion sensors while in tow. The samples are spaced apart by an average spacing interval, which is not small enough to prevent vibration noise from being aliased into a signal cone for a first signal formed from samples of the particle motion wavefield having a uniform spacing at the average spacing interval. The technique includes processing the data to generate a second signal that is indicative of the particle motion wavefield and does not have aliased vibration noise in the signal cone.