Abstract:
A device for medium wavelength infrared emission and a method for the manufacture thereof is provided. The device has a semiconductor substrate; a passive hermetic barrier disposed upon the substrate, and an emitter element disposed within said hermetic barrier; and a mirror.
Abstract:
A method and apparatus is provided for increasing the effectiveness of destroying selected objects in a target cloud by prioritizing the objects detected in a large aperture IR detector aboard a carrier vehicle and sequentially illuminating the detected targets with coded laser radiation, followed by the launching of multiple miniature kill vehicles from the carrier vehicle, with each kill vehicle assigned to a differently-coded object in the target cloud due to the reflection back of the coded returns, thus to permit directing of individual miniature kill vehicles to a specific object in the target cloud prior to a handoff to an IR heat seeker in the miniature kill vehicle, actuated to guide the kill vehicle for a final kill.
Abstract:
Conductor segments are positioned within a transmission line structure in order to generate microwave pulses. The conductor segments are switchably coupled to one or the other of the transmission lines or to each other, in parallel with the transmission line structure. Microwave pulses will be induced in the transmission line by closing the switches in a controlled manner to discharge successive segments or successive groups of segments into the transmission lines. The induced waves travel uninterrupted along the transmission lines in a desired direction.
Abstract:
Conductor segments are positioned within a two conductor transmission line in order to generate microwave pulses. The conductor segments are switchably coupled to one or the other of the transmission lines in parallel. Microwave pulses may be induced in the transmission line by closing the switches in a controlled manner to discharge successive segments into the transmission lines. The induced waves travel uninterrupted along the transmission lines in a desired direction.
Abstract:
A method for connecting circuit elements within an integrated circuit for reducing single-event upsets is disclosed. The integrated circuit includes a first and second circuit elements that are substantially identical to each other. In order to reduce the single- event upsets to the first and second circuit elements, each of the first and second circuit elements is divided into a first sub-element and a second sub-element. The first sub-element of the first circuit element is connected to the second sub-element of the second circuit element. The second sub-element of the first circuit element is connected to the first sub- element of the second circuit element. As a result, the nodal spacings between the sub- elements within the first and second circuit elements are effectively increased without demanding additional real estate.
Abstract:
Honey pots are used to attract computer attacks to a virtual operating system that is a virtual instantiation of a typical deployed operational system. Honey nets are a collection of these virtual systems assembled to create a virtual network. The subject system uses a forward deployed honey net combined with a parallel monitoring system collecting data into and from the honey net, leveraging the controlled environment to identify malicious behavior and new attacks. This honey net/monitoring pair is placed ahead of the real deployed operational network and the data it uncovers is used to reconfigure network protective devices in real time to prevent zero-day based attacks from entering the real network. The forward network protection system analyzes the data gathered by the honey pots and generates signatures and new rules for protection that are coupled to both advanced perimeter network security devices and to the real network itself so that these devices can be reconfigured with threat data and new rules to prevent infected packets from entering the real network and from propagating to other machines. Note the subject system applies to both zero-day exploit-based worms and also manual attacks conducted by an individual who is leveraging novel attack methods.
Abstract:
A power supply includes a power source having first and second terminals. A circuit is coupled to the source and is operable to maintain a first quantity between the terminals within a predetermined range of values until a second quantity between the terminals has a predetermined value. Such a power supply provides the ability to delay activating a load until the current that the supply can provide is at a level acceptable for proper load function.
Abstract:
What is provided is the use of an array of E-field sensors (10) to detect the closest approach of incoming projectiles (14) and to determine through time difference of arrival the bearing (22) of the incoming projectile (14), thus to identify the bearing of the source of the projectile. dE/dT (96) processing of the individual outputs of the E-field sensors (10) indicates by the zero crossing (98) the peak of the E-field disturbance and thus the instance of time of the closest approach of the projectile (14) to a sensor.
Abstract:
The invention has a guidance and control system (44) which includes an optical seeker subsystem (17), a processor subsystem (46), a a three-axis guidance control subsystem (25). The processor subsystem (46) includes a 3-axis MEMs rate sensor (63), a roll algorith device (65), a seeker detection algorithm device (51), and a gudance algorithm device (67). The flight control subsystem (25) includ three canard axis drives (32).
Abstract:
A method of producing an antenna coupler for placement on an antenna under test (AUT) having an aperture. This method includes the steps of constructing a probe from a section of RF hard-line stock having a center conductor and an outer conductor. The outer conductor is removed to expose a portion of the center conductor having a length equal to or less than ¼ wavelength of the AUT. The probe is embedded within a fiberglass shell and has an exposed RF connector for connection to equipment for performing tests on the AUT. The probe is then positioned across the aperture of the Antenna Under Test (AUT).