Abstract:
A method (200a-200b), apparatus (104), and computer program for detecting sequences of digitally modulated symbols transmitted by multiple sources (102, 102a-102t) are provided. A real-domain representation that separately treats in-phase and quadrature components of a received vector, channel gains, and a transmitted vector transmitted by the multiple sources (102, 102a-102t) is determined. The real-domain representation is processed to obtain a triangular matrix. In addition, at least one of the following is performed: (i) hard decision detection of a transmitted sequence and demapping of corresponding bits based on a reduced complexity search of a number of transmit sequences, and (ii) generation of bit soft-output values based on the reduced complexity search of the number of transmit sequences. The reduced complexity search is based on the triangular matrix.
Abstract:
In a pressure sensor (15) with double measuring scale: a monolithic body (16) of semiconductor material has a first main surface (16a), a bulk region (17) and a sensitive portion (33) upon which pressure (P) acts; a cavity (18) is formed in the monolithic body (16) and is separated from the first main surface (16a) by a membrane (19), which is flexible and deformable as a function of the pressure (P), and is arranged inside the sensitive portion (33) and is surrounded by the bulk region (17); a low-pressure detecting element (28) of the piezoresistive type, sensitive to first values of pressure (P), is integrated in the membrane (19) and has a variable resistance as a function of the deformation of the membrane (19); in addition, a high-pressure detecting element (29), also of a piezoresistive type, is formed in the bulk region (17) inside the sensitive portion (33) and has a variable resistance as a function of the pressure (P). The highpressure detecting element (29) is sensitive to second values of pressure (P).
Abstract:
A trench (5) is formed in a semiconductor body (2); the side walls and the bottom of the trench are covered with a first dielectric material layer (9); the trench (5) is filled with a second dielectric material layer (10); the first and the second dielectric material layers (9, 10) are etched via a partial, simultaneous and controlled etching such that the dielectric materials have similar etching rates; a gate-oxide layer (13) having a thickness smaller than the first dielectric material layer (9) is deposited on the walls of the trench (5); a gate region (14) of conductive material is formed within the trench (5); and body regions (7) and source regions (8) are formed within the semiconductor body (2), at the sides of and insulated from the gate region (14). Thereby, the gate region (14) extends only on top of the remaining portions of the first and second dielectric material layers (9, 10).
Abstract:
A method and apparatus for programming a phase change memory cell (2) is disclosed. A phase change memory cell (2) includes a memory element (10) of a phase change material having a first state ("11"), in which the phase change material is crystalline and has a minimum resistance level, a second state ("00") in which the phase change material is amorphous and has a maximum resistance level, and a plurality of intermediate states with resistance levels there between. The method includes using programming pulses to program the phase change memory cell (2) in either the set, reset, or one of the intermediate states. To program in the intermediate states, a programming pulse creates a crystalline percolation path having an average diameter (D) through amorphous phase change material and a second programming pulse modifies the diameter (D) of the crystalline percolation path to program the phase change memory cell to the proper current level.
Abstract:
MOSFET device formed in a semiconductor layer (12) overlaid by an insulated-gate structure (13, 14, 21) having at least two gate electrodes (14), of semiconductor material, which extend at a distance from one another and delimit between them a strip-shaped opening (15). The semiconductor layer accommodates a strip-shaped body region (19), which in turn accommodates a source region (20). A source-contact metal region (29) extends at least partially in the opening (15) and is in electrical contact with the body region (19) and the source structure (20, 25). The opening (15) is formed by elongated windows (15a) and contact cells (18) extending between pairs of consecutive elongated windows. The elongated windows (15) are filled with dielectric spacer material (26), and the metal contact structure (29) has first portions extending above the opening (15) at the elongated windows (15a) and second portions extending within the opening at the contact cells (18) and in direct electrical contact with the source structure (20, 25).
Abstract:
Method for growing carbon nanotubes having a determined chirality, comprising the steps of fragmentation of at least one initial carbon nanotube (30) having a determined chirality with obtainment of at least two portions, or seeds, of carbon nanotube, each one having one free growth end (32); supply of atoms of carbon (33) with autocatalyst addition of the atoms of carbon (33) at the free end (32) of each portion of nanotube (30) to determine an elongation, or growth, of the nanotube (30).
Abstract:
A digital high-pass filter (12) has an input (IN), an output (OUT), and a subtractor stage (20), having a first input terminal, a second input terminal and an output terminal. The first input terminal of the subtractor stage (20) is connected to the input (IN) of the digital high-pass filter (12) and the output terminal is connected to the output (OUT) of the digital high-pass filter (12). A recursive circuit branch (21) is connected between the output (OUT) of the digital high-pass filter (12) and the second input terminal of the subtractor stage (20). Within the recursive circuit branch (21) are cascaded an accumulation stage (23), constituted by an integrator circuit, and a divider stage (24). The cutoff frequency (f t ) of the digital high-pass filter (12) is variable according to a dividing factor (den) of the divider stage (24).
Abstract:
Power semiconductor device (30) integrated on a semiconductor substrate (100) of a first type of conductivity comprising a plurality of elemental units, each elemental unit comprising a body region (40) of a second type of conductivity realised on a semiconductor layer (20) of the first type of conductivity formed on the semiconductor substrate (100), and a column region (50) of the first type of conductivity realised in said semiconductor layer (20) below the body region (40), wherein the semiconductor layer (20) comprises a plurality of semiconductor layers (21, 22, 23, 24), overlying each other, the resistivity of each layer being different from that of the other layers, and wherein said column region (50) comprises a plurality of doped sub-regions (51, 52, 53, 54), each realised in one of said semiconductor layers (21, 22, 23, 24), wherein the amount of charge of each doped sub-regions (51, 52, 53, 54) balances the amount of charge of the semiconductor layer (21, 22, 23, 24).
Abstract:
Both a chalcogenide select device (24, 120) and a chalcogenide memory element (40, 130) are formed within vias within dielectrics (18, 22). As a result, the chalcogenides is effectively trapped within the vias and no glue or adhesion layer is needed. Moreover, delamination problems are avoided. A lance material (30) is formed within the same via (31) with the memory element (40, 130). In one embodiment, the lance material is made thinner by virtue of the presence of a sidewall spacer (28); in another embodiment no sidewall spacer is utilized. A relatively small area of contact between the chalcogenide (40) used to form a memory element (130) and the lance material (30) is achieved by providing a pin hole opening in a dielectric (34), which separates the chalcogenide and the lance material.
Abstract:
In order to execute, as a function of a received signal (r), a procedure of channel estimation in a transmission channel with memory in a telecommunications system, there is envisaged an operation of estimation of a delay spread associated to said channel, said operation of estimation comprising calculation of a root mean square value ( τ rms ) of delay spread by means of a step of evaluation of crossings with a threshold level of a quantity associated to a transfer function of said channel. Said step of evaluation of crossings comprises evaluating a mean number of crossings ( λ 0 ) of the real and imaginary parts of said channel transfer function with a threshold level corresponding to the zero level. Preferential application is to OFDM telecommunications systems and in particular wireless. systems according to the IEEE 802.11a WLAN standard or the Hyperlanil WLAN standard.