Abstract:
A pelletizing device comprising a rotary drivable at least partly cylindrical die, wherein the cylindrical part comprises a multitude of radial openings for forming of pellets and at least one roller rotatable around a stationary shaft, for pressing of material to be pelletized through the radial openings in the die, wherein the roller is mounted to the corresponding stationary shaft by means of at least one roller bearing and wherein the pelletizing device comprises an oil circulation system for lubricating each of the roller bearings of each of the rollers with oil.
Abstract:
The invention relates to an apparatus for producing CO2 pellets from CO2 snow, in particular, for a cleaning device for spraying surfaces to be treated with a mixed stream of a pressurized gas and CO2 pellets, includes a compressor device for compressing CO2 snow to form CO2 pellets. The compressor device includes a gear compressor. The gear compressor includes at least one compressor wheel which is mounted rotatable about a first rotation axis and has a plurality of compressing elements, and includes at least one intake wheel which has a plurality of snow intakes for accepting CO2 snow. The snow intakes are configured corresponding to the compressing elements. The intake wheel is mounted rotatable about a second rotation axis and cooperates with the at least one compressor wheel. The intake wheel includes an intake wheel sleeve with an intake wheel sleeve wall.
Abstract:
The invention pertains to a pellet mill 2 for forming pelleted material, the pellet mill 2 comprising: A die 4 having a cylindrical inner surface 6 with a plurality of apertures 8 formed therein and extending to the outside of the die 4, the volume bounded by said inner cylindrical surface 6 defining a die chamber 10. At least two cylindrical rollers 12, 14, 16 adapted to travel over said inner cylindrical surface 6 of the die 4 in a rolling motion. Drive means for causing relative rotation of the die 4 and the rollers 12, 14, 16, so that the rollers 12, 14, 16 will travel over the inner cylindrical surface 6 of the die 4, thereby forming wedge-shaped spaces 18, 20, 22 between the rollers 12, 14, 16 and the inner cylindrical surface 6 of the die 4. A feed system, comprising at least two conduits 24, 26, 28, one associated with each of the at least two rollers 12, 14, 16, extending into the die chamber 10, each of the conduits 24, 26, 28 having a side opening 32 for feeding the pelletizable material 30 into the wedge-shaped spaces 18, 20, 22 between the rollers 12, 14, 16 and the inner cylindrical surface 6 of the die 4, the side opening 32 extending axially along the conduit 24, 26, 28 and having an extension that is equal to the length of the rollers 12, 14, 16, wherein at least one of the conduits 24, 26, 28 is configured for feeding the pelletizable material 30 directly to a wedge-shaped space 22, which is at a higher location in the die chamber than said conduit 28.
Abstract:
A pelletizing device comprising a die with a first surface, called operative surface, and a second surface that is essentially parallel to the first surface, the die between the first and the second surface comprising multiple through going openings for the forming of pellets, at least two rollers rotatable around a shaft, wherein the rollers and the die are moveable with respect to each other, each of the rollers comprising an operative pressing surface for pressing material to be pelletized through the radial openings of the die, wherein a width of the operative pressing surface on each of the rollers is smaller than a width of the operative surface of the die. The invention also relates to rollers for the device.
Abstract:
A method for producing make-up elements (1) involves mixing at least some pigments/beads, a filler and a binder to obtain a make-up powder (2) pressing the make-up powder (2) on a first surface (23) of a matrix (20) having a plurality of through holes (21), thus pushing the make-up powder through a first end of said holes to form a plurality of strips (L) which protrude from a second end of the holes (21) disposed on a second surface (24) of the matrix (20), and breaking the plurality of strips (L) in the proximity of said second surface, so as to form a plurality of make-up elements (1); the invention also relates to a make-up element and to a cosmetic make-up product.
Abstract:
A pelletizing device comprising a die with a first surface, called operative surface, and a second surface that is essentially parallel to the first surface, the die between the first and the second surface comprising multiple through going openings for the forming of pellets, at least two rollers rotatable around a shaft, wherein the rollers and the die are moveable with respect to each other, each of the rollers comprising an operative pressing surface for pressing material to be pelletized through the radial openings of the die, wherein a width of the operative pressing surface on each of the rollers is smaller than a width of the operative surface of the die. The invention also relates to rollers for the device.
Abstract:
The present invention provides portable pelletizing systems for in situ processing of biomass material to pellets. Systems according to embodiments of the invention have a complete set of processing components and an engine for powering the processing components. The processing components are interconnected. Loading, unloading, and coordination of each of the processing components is automatically controlled through a controller. A heat exchange network is integrated with the engine and the processing components, wherein the heat exchange network transfers heat between the engine and the processing components. The system is self-contained and may be transported using a vehicle so that the system may receive biomass material of varying composition and moisture content at a point of origin. The complete set of processing components may include an input, a means for reducing the size of the biomass material, a blender, a dryer, a conditioner, a pellet mill, a cooler, and an output.
Abstract:
The invention pertains to a pellet mill 2 for forming pelleted material, the pellet mill 2 comprising: A die 4 having a cylindrical inner surface 6 with a plurality of apertures 8 formed therein and extending to the outside of the die 4, the volume bounded by said inner cylindrical surface 6 defining a die chamber 10. At least two cylindrical rollers 12, 14, 16 adapted to travel over said inner cylindrical surface 6 of the die 4 in a rolling motion. Drive means for causing relative rotation of the die 4 and the rollers 12, 14, 16, so that the rollers 12, 14, 16 will travel over the inner cylindrical surface 6 of the die 4, thereby forming wedge-shaped spaces 18, 20, 22 between the rollers 12, 14, 16 and the inner cylindrical surface 6 of the die 4. A feed system, comprising at least two conduits 24, 26, 28, one associated with each of the at least two rollers 12, 14, 16, extending into the die chamber 10, each of the conduits 24, 26, 28 having a side opening 32 for feeding the pelletizable material 30 into the wedge-shaped spaces 18, 20, 22 between the rollers 12, 14, 16 and the inner cylindrical surface 6 of the die 4, the side opening 32 extending axially along the conduit 24, 26, 28 and having an extension that is equal to the length of the rollers 12, 14, 16, wherein at least one of the conduits 24, 26, 28 is configured for feeding the pelletizable material 30 directly to a wedge-shaped space 22, which is at a higher location in the die chamber than said conduit 28.
Abstract:
Rotary forming devices and methods of using the rotary forming devices for producing products such as filled and unfilled “pillow” shaped products. In an embodiment, the invention provides a device comprising a housing comprising a die plate defining a plurality of outlets. The housing defines an inlet. A race plate is attached to the die plate. The race plate circumscribes the outlets of the die plate. A forming wheel is rotatably attached to the die plate. A motor assembly is attached to the forming wheel. The motor assembly is constructed and arranged to rotate the forming wheel in a hypocycloid motion.
Abstract:
An improved pellet mill is shown which has an annular die of the kind having a multiplicity of radial bores through which raw material is extruded to form pellets. The annular body of the die has an inner circumferential surface which defines a compression side of the die, and an outer circumferential surface which defines a discharge side of the die. The compression side and discharge side of the body are separated by a thickness therebetween with the radial bores extending through the thickness from the compression side to the discharge side thereof. Each die hole begins as a countersink region on the compression side of the die body. The countersink region leads to a compression hole which communicates with the discharge side of the die body. Each of the compression holes has an internal diameter and a length. The ratio of the internal diameter to length of each compression hole is at least about 16:1.