Abstract:
A baffle includes a body member having a first surface, a second opposed surface, and an outer peripheral edge. An aperture may be formed through the body member to define an inner peripheral edge. The inner peripheral edge is distorted to be non-planar. An apparatus includes a first conduit having a first end, a second end, and a first channel extending therebetween. At least one baffle is disposed in the first channel and includes a body member having a first surface, a second opposed surface, and an outer peripheral edge. At least one aperture may be formed through the body member to define an inner peripheral edge. The inner peripheral edge is distorted to be non-planar. A second conduit may be disposed inside the first conduit and extend through the aperture in the baffle. The apparatus may be an ultraviolet light reactor, a heat exchanger, or a static mixer.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.
Abstract:
The present invention relates to a fluid treatment system comprising: an inlet; an outlet; and a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone has disposed therein: (i) an elongate first radiation source assembly having a first longitudinal axis, and (ii) an elongate second radiation source assembly having a second longitudinal axis. The first longitudinal axis and the second longitudinal axis are non-parallel to each other and to a direction of fluid flow through the fluid treatment zone. The present fluid treatment system has a number of advantages including: it can treat large volumes of fluid (e.g., wastewater, drinking water or the like); it requires a relatively small “footprint”; it results in a relatively lower coefficient of drag resulting in an improved hydraulic pressure loss/gradient over the length of the fluid treatment system; and it results in relatively lower (or no) forced oscillation of the radiation sources thereby obviating or mitigating of breakage of the radiation source and/or protective sleeve (if present). Other advantages are discussed in the specification.
Abstract:
A container for purification of water by a combination of filtering, heating, and UV-radiation of the water is disclosed. The container includes a first section, which at least partly includes a sunlight permeable layer, and a second section, which at least partly is opposite the first section and at least partly includes a sunlight absorbing and infrared radiation emitting (IR-emitting) layer. The first and the second section together enclose a volume, in which the water can be received to be heated by and exposed to sunlight. According to the present invention, the first section is arranged such that the permeable layer is essentially flat, and the second section is arranged such that the volume includes at least a first and a second portion, wherein the first and the second portion, respectively, have a first and a second distance, respectively, between the permeable layer and the sunlight absorbing and IR-emitting layer, where the first and second distances are mutually different. A temperature difference between the water in the first and second portion is created after a period of sun exposure.
Abstract:
The present invention provides a combined labyrinthine fluid sterilizing apparatus, comprising a chamber having an inlet and an outlet as well as a blower/fan provided in the chamber. Ultraviolet lamps are mounted in the lumen of the chamber. The lumen of the chamber is divided by a plurality of bafflers having pores. The pores in the adjacent bafflers are arranged to stagger up and down or from side to side. A mesh plate is provided at the pore. The top and bottom plates of the chamber can be flipped open. The baffler is inserted in the slots in the inner side of the front and back plates. The top and bottom plates have the pore and a cover plate which are both covered by a shield. At least one of the bafflers has a pore, and is provided with a one-way openable valve. The blower is mounted at the pore of the baffler. The chamber and the bafflers are coated with a layer of titanium dioxide. According to the present invention, it is possible to add, remove, or replace the baffler, the filter mesh, the blower or the purifying accessories and the like. The one-way openable valve can prevent the polluted water or air from flowing backwards. Further the to and fro winding disinfecting and sterilizing path prolongs the disinfecting and sterilizing process and increases the duration. With the photocatalytic effect of titanium dioxide, the organic substances are effectively decomposed, the dirt is eliminated, and deodorization and sterilization achieved. As a result, an ideal effect of disinfection and sterilization is achieved.
Abstract:
Disclosed herein is a ballast water treatment device. The device includes a filtering unit filtering ballast water introduced into a ship using a filter, a vortex generating unit generating an artificial vortex in the ballast water filtered by the filtering unit, and an ultraviolet treatment unit having an ultraviolet lamp which sterilizes the ballast water discharged from the vortex generating unit using ultraviolet rays, thus preventing secondary contamination resulting from by-products, preventing a ballast tank from becoming contaminated, affording effective maintenance, and making it convenient to control. Further, an artificial vortex is formed in the ballast water when it is mixed, thus allowing a large quantity of ultraviolet rays to be radiated onto the ballast water passing through the ultraviolet treatment unit, therefore improving a sterilization effect.
Abstract:
An Ultraviolet-C (UVC) based portable water purification system employing a novel array of baffles increases the efficiency per unit energy of irradiating UVC light in the eradication of pathogens in the water. Closed loop feedback allows monitoring the application of UVC light power to ensure high levels of pathogen eradication. This system is capable of eradicating a wide range of waterborne bacteria, viruses, protozoa, helminthes, yeast, and mold found in natural freshwater sources worldwide. By adding pre- or post-filters, the system can remove harmful organic compounds, pesticides, inorganic compounds and heavy metals from the water. The system can also be used to eradicate pathogens in fluids other than water. As a feature of this invention, a communications systems that can reach geographically dispersed populations at low cost without the need to install costly wired communications infrastructure is combined with and powered by the water purification system. In one embodiment, a packet radio system is provided to create nodes in a wireless mesh communications system to provide voice, data, video and internet communications using an array of the water purifiers to create a wireless mesh network.
Abstract:
A device for a liquid treatment unit includes a UV generating element, arranged inside a compartment, which compartment is arranged in a liquid treatment enclosure, which enclosure is arrange with an inlet and an outlet, wherein the compartment includes UV light permeable material, and wherein the liquid to be treated surrounds the compartment. The invention is characterised in that the device includes a mechanical cleaning element arranged to and capable of cleaning outer surface of the compartment when the unit is in operation.
Abstract:
A method of inactivating microorganisms such as viruses within a fluid such as a biological fluid is disclosed. The method includes the steps of providing a UV reactor, which may take the form of an elongated generally annular reaction chamber surrounding at least one elongated UV lamp, moving the fluid within the reaction chamber in a primary flow directed along the length of the UV lamp, and inducing a circulating secondary flow within the fluid with the secondary flow being superimposed on the primary flow. As the fluid moves through the reaction chamber in the primary flow, it is circulated repeatedly toward and away from the UV lamp in the circulating secondary flow to provide uniform and controllable exposure of the entire volume of fluid to ultraviolet radiation. Microorganisms such as viruses are thus inactivated while desirable components in the fluid, such as proteins, are preserved without the use of a free radical scavenger.
Abstract:
A method and apparatus for disinfection/pasteurization of fluids. There is provided a mercury/gallium metal halide ultraviolet lamp enclosed within an ozone free metallic doped quartz envelope, an ozone free, metallic doped quartz enclosure for the lamp, an in-line stationary spiral or internal thread of single or multiple leads surrounding the enclosure, and a containment vessel having an inlet, an outlet and a chamber in fluid communication therewith defining a flow path for fluid to be disinfected/pasteurized. The lamp is operated at a wavelength range from about 100 nanometers to about 400 nanometers to introduce multiband ultraviolet radiation and minimal heat into the fluid with the enclosure preventing build up of ozone.