Abstract:
Disclosed are the simian T-cell lymphotropic virus type 3 subtype D (STLV-3 subtype D), isolated nucleic acid molecules encoding STLV-3 subtype D polypeptides, such as STLV-3 subtype D envelope, protease, polymerase, tax, rex, and capsid polypeptides, isolated polypeptides encoded by such nucleic acids. Methods are also disclosed for detecting STLV-3 subtype D, for example by detecting a STLV-3 subtype D nucleic acid or polypeptide in the sample. Accordingly, probes, primers, and antibodies for use in detecting STLV-3 subtype D nucleic acids or polypeptides are disclosed. Therapeutic compositions which included isolated nucleic acid molecules encoding a STLV-3 subtype D polypeptides or isolated polypeptides encoded by such nucleic acid molecules are also disclosed.
Abstract:
The present invention provides antibodies, or fragments thereof, for isolating and/or identifying epitopes of an endogenous retrovirus, preferably of a melanoma associated endogenous retrovirus, and hybridoma cells producing said antibodies. The antibodies are useful especially for the treatment and diagnosis of cancer. Further, the present application covers diagnostic kits for the detection of cancer cells, especially of melanoma cells and methods for cancer diagnosis using said antibodies.
Abstract:
The present invention provides antigenic polypeptides derived from the melanoma-associated endogenous retrovirus (MERV). These antigens are useful compounds for the detection of cancerous cells and melanoma-diagnosis as well as melanoma-prognosis. Furthermore these antigenic polypeptides of the present invention form the basis for anti-cancer vaccines.
Abstract:
The present invention provides for isolated nucleic acid sequences encoding viruses; isolated polypeptides comprising amino acid sequences of the virus; vectors comprising the viral nucleic acid sequences; cells comprising the vectors; antibodies and antigen binding fragments thereof which have binding specificity for the virus; methods of detecting or screening for the virus (e.g., in an individual); methods of identifying agents that inhibit the virus; methods of inducing an immune response to the virus; methods of treating disease associated with the presence of XMRV in an individual (e.g., cancer such as prostate cancer); methods of detecting asymptomatic cancer (e.g., prostate cancer); methods of identifying an individual at risk for developing cancer (e.g., prostate cancer); and kits for detecting the virus.
Abstract:
Novel HTLV-I and HTLV-II peptides are disclosed for use in diagnostic assays for detecting and confirming HTLV-I and HTLV-II infection in human sera. The peptides are derived from analogous regions of HTLV-I and HTLV-II gp21 envelope protein, and are diagnostic of HTLV-I or HTLV-II infection. The invention also includes an assay kit and method for detecting, and discriminating between, HTLV-I and HTLV-II infection in humans.
Abstract:
Methods and compositions are provided for facilitating gene therapy procedures involving the transduction of target cells with retroviral vector particles in the presence of complement containing body fluids. The reduction of levels of galactose alpha (1, 3) galactosyl epitopes on the retroviral vector particles and/or the blockade of antibody binding to such epitopes have been found to render the particles less sensitive to inactivation by complement mediated mechanisms, and to thus allow transduction in the presence of complement containing body fluids. Means are provided for obtaining such reductions.
Abstract:
A method of producing active immunity against a viral disease in an animal subject comprises administering to the subject a vaccine conjugate consisting essentially of a live virus and a neutralizing factor bound to the live virus. The neutralizing factor is selected from the group consisting of antibodies and antibody fragments. The live virus is one capable of producing disease in the subject, and the antibody or antibody fragment is one capable of neutralizing the live virus. Preferred subjects are birds, a preferred virus is Infectious Bursal Disease Virus, and a preferred route of administration to birds is by in ovo administration.
Abstract:
A method of producing active immunity against a viral disease in an animal subject comprises administering to the subject a vaccine conjugate consisting essentially of a live virus and a neutralizing factor bound to the live virus. The neutralizing factor is selected from the group consisting of antibodies and antibody fragments. The live virus is one capable of producing disease in the subject, and the antibody or antibody fragment is one capable of neutralizing the live virus.