Abstract:
A high-hardness hard coat film having a reduced degree of curling and an ionizing ray polymerizable resin composition for forming the hard coat layer of such a hard coat film are provided. The hard coat film includes a resin film and a hard coat layer disposed on the surface of the resin film. The hard coat layer is formed of a cured product of a photopolymerizable composition containing an acrylic component, a hyperbranched acrylate resin, a silicone component, and silica particles. The cured product is produced by exposure to ionizing rays.
Abstract:
This invention concerns a polymer coating material composition (PCM) comprising as components a Polymer Matrix, carbon nanotubes (CNT) as optical power limiters (OPL), and carbon-rich molecules. One aspect of the invention is where the Polymer Matrix is a hyperbranched polymer, such as a hyperbranched polycarbosiloxane polymer. Another aspect of the invention is where the CNT is a short multiwall carbon nanotube (sMWNT). A further aspect of the invention is where the carbon-rich molecules are triethoxysilyl anthracene derivatives.The composition wherein the ratio in weight percent of Polymer Matrix to CNT to carbon-rich molecule is from 94:3:3 to 99.8:0.1:0.1.The composition can further contain one or more of multi-photon absorbers (MPA) chromophores or reverse saturable absorbers (RSA) chromophores.These compositions can be used as: a) a film, b) a coating, c) a liquid, d) a solution, or e) a sandwiched film between two transparent substrates.
Abstract:
Mechanisms for coating surfaces of materials, the resulting coated materials, and solutions for use in material-coating processes are described. Triblock molecule components may be selected for desired properties. When applied in solution to a material, the molecules self-assemble into similarly oriented micro- or nanostructures coating the surface of the material. Various molecule properties can be tailored to produce a range of desirable surface coating properties. The surface coating may optionally be self cleaning if selected to be appropriately hydrophobic, allowing water and particulates to roll off of the surface with minimal friction.
Abstract:
An oxygen-scavenging composition is provided that includes an oxygen-scavenging polymer and a catalyst. The oxygen-scavenging polymer, which in preferred embodiments is suitable for use in packaging articles, is a dendritic polymer having one or more oxygen-scavenging groups.
Abstract:
A method for producing a substrate having dispersed particles of a dendrimer compound on the surface thereof, the method including: an application step including dissolving a phenyl azomethine dendrimer compound in a solvent to prepare a solution, and applying the solution on the surface of a substrate; and a volatilization step including volatilizing the solvent from the solution applied on the surface of the substrate, the phenyl azomethine dendrimer compound included in the solution having a concentration of no greater than 5 μmol/L is employed.
Abstract:
Mechanisms for coating surfaces of materials, the resulting coated materials, and solutions for use in material-coating processes are described. Triblock molecule components may be selected for desired properties. When applied in solution to a material, the molecules self-assemble into similarly oriented micro- or nanostructures coating the surface of the material. Various molecule properties can be tailored to produce a range of desirable surface coating properties. The surface coating may optionally be self cleaning if selected to be appropriately hydrophobic, allowing water and particulates to roll off of the surface with minimal friction.
Abstract:
This invention concerns a polymer coating material composition (PCM) comprising as components a Polymer Matrix, carbon nanotubes (CNT) as optical power limiters (OPL), and carbon-rich molecules. One aspect of the invention is where the Polymer Matrix is a hyperbranched polymer, such as a hyperbranched polycarbosiloxane polymer. Another aspect of the invention is where the CNT is a short multiwall carbon nanotube (sMWNT). A further aspect of the invention is where the carbon-rich molecules are triethoxysilyl anthracene derivatives.The composition wherein the ratio in weight percent of Polymer Matrix to CNT to carbon-rich molecule is from 94:3:3 to 99.8:0.1:0.1.The composition can further contain one or more of multi-photon absorbers (MPA) chromophores or reverse saturable absorbers (RSA) chromophores.These compositions can be used as: a) a film, b) a coating, c) a liquid, d) a solution, or e) a sandwiched film between two transparent substrates.
Abstract:
The invention herein relates to a surface protective dendritic polymer composition and to the cross-linked surface protective coating formed therefrom.
Abstract:
The present invention relates to surface modification of reverse osmosis membranes to introduce antifouling properties without compromising the separation properties of the original membranes. This approach utilizes: providing a coated membrane surface having enhanced hydrophilic characteristics that prevents the biofoulants from settling; have a surface that consists of hydrophilic brushes that unsettle any biofoulants that get through; and having antimicrobial ions present in the membrane coatings and able to remove or minimize any remaining biofoulants without leaching into the permeate. These coatings are made using dendritic polymers such as hyperbranched polymers or dendrimers.
Abstract:
A phase change ink composition comprising (a) at least one curable monomer or prepolymer, (b) at least one gellant, (c) at least one hyperbranched polymer comprising at least one photoinitiating moiety, (d) a colorant, (e) optionally, a reactive oligomer; and (f) optionally, at least one low molecular weight photo initiator.