Abstract:
La présente invention concerne une méthode de détermination de la transmission opto-énergétique d'une feuille d'un matériau transparent ou translucide, comprenant les étapes successives suivantes : a) l'exposition à un rayonnement électromagnétique de la feuille, la feuille étant placée entre la source du rayonnement et une cellule photovoltaïque de mesure, la feuille recouvrant totalement la cellule et l'irradiance du rayonnement étant maintenue à une valeur constante choisie; b) la capture par la cellule de l'énergie transmise au travers de la feuille; c) la mesure de la réponse de la cellule au rayonnement; et d) la conversion de la réponse de la cellule en une valeur de transmission opto-énergétique. Une telle méthode présente une bonne fiabilité, en particulier pour des feuilles d'un matériau diffusant, une bonne reproductibilité des mesures et elle permet une mesure simplifiée, plus précise et plus rapide sur des feuilles de surface plus grande. L'invention concerne également un dispositif pour la mise en œuvre d'une telle méthode.
Abstract:
Provided is a specular array for radiometric calibration (SPARC). The array includes a plurality of spherical mirrors disposed upon a uniform background as at least one array of reflective points, at least two points reflecting a different intensity of directly incident sunlight. Each mirror has a radius of curvature and a diameter, the radius of curvature and the diameter providing a field of regard, the collective mirrors providing a collective minimum calibratability field of regard. Based upon the radius of curvature, the transmittance value of the sun to each mirror and from each mirror to a sensor being calibrated, the intensity of calibration light provided to the input aperture of a sensor to be calibrated within the collective minimum calibratability field of regard may be determined and used as a baseline for sensor calibration. An associated method of combined spatial and radiometric calibration is also provided.
Abstract:
The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.
Abstract:
A method and apparatus for exposing a solar device to simulated environmental conditions is described. In one embodiment, a chamber is described. The chamber includes a frame defining a partial enclosure having an interior volume, the frame comprising a door selectively sealing an opening in the frame, a plurality of lighting devices coupled to the enclosure interior of an open wall, each of the plurality of lighting devices being positioned to direct light toward an upper surface of a platen disposed in the interior area, and a plurality of fan units positioned in an opening formed in a sidewall of the frame, each of the plurality of fan units positioned to direct ambient air flow from the outside of the enclosure toward the platen and between the plurality of lighting devices to exit through the open wall.
Abstract:
Eine Referenzsolarzelle dient als optisches und elektrisches Referenzobjekt bei Leistungsmessungen von Solarzellen unter natürlicher und künstlicher Bestrahlung (Solarsimulatoren) wie z.B. in IEC60904 geschildert. Eine erfindungsgemässe Referenzsolarzelle umfasst eine in einem Gehäuse (200) gefasste Solarzelle (201), die hinsichtlich (spektral-) radiometrischer Anforderungen ausgewählt ist. Ferner ist ein Verlauffilter (208) mit ortsabhängiger Transmission (Linien oder Banden) auf die Solarzelle (200) aufgebracht und eine Spektralschablone (209), die einen Teil des Verlauffilters (208) zur Transmission von Strahlung auf die Solarzelle (200) freigibt, so dass bei ortsunabhängiger spektraler Bestrahlung der Referenzzelle eine wählbare spektrale Empfindlichkeit der Referenzzelle resultiert. Dies führt zur Verbesserung der spektralen Anpassung der Referenzsolarzelle an eine spektrale Empfindlichkeit einer Testsolarzelle.
Abstract:
A photon source comprises a plasma source (10) with at least one cathode (11) and at least one anode (12), between which a system of one or more mutually separated cascade plates (13) is placed. The cascade plates are provided with at least one passage opening (15), wherein corresponding passage openings of successive cascade plates He at least substantially mutually in line. The plasma source comprises a gas inlet (21) for admitting a gas to be excited at an inlet pressure. An electric power source (40) is connected between the cathode and the anode. The power source is able and adapted to generate a modulated current The gas inlet is coupled to gas supply means (25,26) which are able and adapted to admit the gas to be excited at a modulated, sub- atmospheric to above-atmospheric inlet pressure.
Abstract:
The invention relates to a method for determining the efficiency of an optical apparatus for a selected area of photoelectric means included in said apparatus. The invention also relates to a device for determining the absolute efficiency of an optical apparatus for a selected area of photoelectric means contained therein, wherein said device comprises: a first integration sphere for equalising and dimming the incident light beam; and a first calibrated photodiode for measuring the light intensity in said first sphere; characterised in that it further comprises: a second integration sphere, the interior of which communicates with that of the first sphere through a diaphragm having an opening with a predetermined diameter; a second photodiode for measuring the light intensity of the second integration sphere via a diaphragm provided through the wall of the second sphere and having a predetermined opening; positioning means attached to the second sphere, the positioning means being capable of receiving the second photodiode and said photoelectric means.
Abstract:
A system for calibrating a sensor in a vehicle, such as a space capsule or other space borne apparatus, uses an expandable integrating sphere. A sensor in the vehicle measures the energy from an electromagnetic energy source within the integrating sphere through a calibration window. The expandable fluid impermeable integrating sphere expands when filled with a fluid, such that when filled with the fluid, its interior is viewable through the calibration window. The system includes a source of fluid to fill the integrating sphere and a fluid regulator coupled to the vehicle to determine when to supply the fluid to the integrating sphere to maintain an appropriate gas pressure level with the integrating sphere.