Abstract:
A system for detecting fissile and fissionable material originating external to the system includes: a 6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.
Abstract:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.
Abstract:
A method for measuring a dose of irradiation with a beam of ionizing radiation capable of creating Cherenkov radiation, in which a scintillator for emitting scintillation light, whose intensity is a function of the dose of this beam irradiating this scintillator, is arranged below this beam, the scintillator is coupled, via an optical fiber, to a device for measuring the light emitted by the scintillator, and the quantity of light transmitted by the optical fiber is measured, is described. The light emerging from the opposite end of the optical fiber is filtered using two bandpass filters having cutoff bands in different parts of the spectrum, the intensity of the light coming from these two filters is measured a plurality of times, and the pluralities of quantities of scintillation light and Cherenkov radiation are calculated on the basis of these measurements to deduce a first irradiation dose value.
Abstract:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.
Abstract:
A method of measuring in real time a dose of radiological radiation absorbed by a region under inspection subjected to a flux of radiological radiation, the method comprising the steps consisting in: a) detecting the incident radiation at at least one point of the region under inspection using at least a first bundle of measurement optical fibers (2) containing at least one fiber placed in said region under inspection and adapted to generate a light signal on receiving radiological radiation; b) measuring said light signal away from the region under inspection after it has been transmitted along the measurement optical fiber; and c) determining the dose of radiological radiation received by said measurement optical fiber on the basis of said light signal.
Abstract:
The invention provides an improved neutron detector of fast neutrons and may be used particularly in the advanced detection technologies for the non-intrusive interrogation of passengers luggage, large cargo and trucks. The proposed detector of fast neutrons consists of fiber block (parallelepiped), which is assembled of the layers of polymer scintillating fibers, oriented in two mutually perpendicular directions and optoelectronic system of registration of optical irradiation. Optoelectronic system of registration is based upon position sensitive photo-receivers, which are optically coupled with corresponding of fiber edges. Optoelectronic system consists of two local optical sub-systems. The first (main) sub-system matches each individual fiber edge with corresponding element of two-dimensional position sensitive photo-receiver. The second (complementary) sub-system matches columns and rows of fiber edges with corresponding individual pixels of fast linear photo-receivers.
Abstract:
A portable dosimetry system measures individual seed strengths of fully loaded multi-seed holders. The system includes a 5 mm diameter scintillating fiber disposed in a groove on a rigid bed. A photomultiplier tube (PMT) is supported on the rigid bed and is coupled to an end surface of the scintillating fiber. Attachments are provided for positioning multi-seed holders adjacent the peripheral surface of the scintillating fiber, and movable shield plates are provided for inhibiting stray radiation (produced by neighboring seeds) from reaching the scintillating fiber. The system is useful for calibrating 100% of the seeds in a holder in less time than it currently takes to calibrate 10% of the seeds in the holder.
Abstract:
A radiation detector obtains radiation information by detecting a light pulse occurred in response to a radiation in a scintillation fiber at one end or opposite ends of the scintillation fiber. The scintillation fiber is surrounded by a scattering member which emits an electron by interaction with the radiation.
Abstract:
Device for the remote detection of radiation.This device has an optical fibre (4), a detecting crystal (10), whereof one end is optically coupled to the optical fibre and which is able to emit, by interacting with the radiation (2), a light which then propagates in the optical fibre, as well as an optical cladding (12) surrounding the detecting crystal and which is in optical contact therewith and whose optical index is lower than that of the detecting crystal, so as to confine said light by total reflection. Application to dosimetry.
Abstract:
An improved hybrid luminescent device and method for converting penetrating radiation energy into visible light for imaging applications. The hybrid luminescent device includes a phosphor screen disposed on an entrance face fiber optics scintillator which, in turn, may be removably coupled to a camera or like recording media. The hybrid luminescent device of the present invention is capable of providing enhanced radiation absorption efficiency, higher spatial resolution and enhanced brightness or luminescence output over that which is achievable by the phosphor screen and/or fiber optics scintillator when used separately as an intensifying screen for imaging of ionizing and/or penetrating radiation.