Abstract:
A universal remote control device and methods for controlling multiple devices with a universal remote control device are provided. The method includes receiving a boot completed notification from a control unit of the universal remote control device and displaying a troubleshooting icon on a display of the universal remote control device. Upon receiving a user input selecting the troubleshooting icon, the method includes generating a power user interface menu enabling discrete control of power for each device controlled by the universal remote control device. The power user interface menu is displayed on a least a portion of the display of the universal remote control device.
Abstract:
A method and system for applying over the air updates to a universal remote control device. The method and system include determining a group associated with the universal remote control based on a remote profile stored on at least one of: a memory of the universal remote control device, and a universal remote database hosted on an external server infrastructure. The method and system also include determining an over the air update that is applicable to the universal remote control device based on the group that is associated with the universal remote control device. The method and system additionally include determining a power level of a battery of the universal remote control device. The method and system further include applying the over the air update that is applicable to the universal remote control device based on the power level of the battery of the universal remote control device.
Abstract:
Presented is a control system for augmenting a portable touch screen device having integral processing capability. The control system includes an enclosure configured for encasing the portable touch screen device, an internal docking connector configured for communicatively mating with the portable touch screen device, and hard buttons. At least one of the hard buttons is functionally configured for use with an application program running on the portable touch screen device. The control system includes further includes a processor configured for converting button actuations into a digital format, and a first facility for communicating the digital format to the portable touch screen device via the internal docking connector. The application program is configured such that, during operation, the application program communicates the status of the one hard button to at least one external device.
Abstract:
Presented is a control system for augmenting a portable touch screen device having integral processing capability. The control system includes an enclosure configured for encasing the portable touch screen device, an internal docking connector configured for communicatively mating with the portable touch screen device, and hard buttons. At least one of the hard buttons is functionally configured for use with an application program running on the portable touch screen device. The control system includes further includes a processor configured for converting button actuations into a digital format, and a first facility for communicating the digital format to the portable touch screen device via the internal docking connector. The application program is configured such that, during operation, the application program communicates the status of the one hard button to at least one external device.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
In a method for wireless communication between a control unit and an electronic housing mounted on a vehicle member, information for the electronic housing is transmitted in the form either of continuous signals, or of signals modulated by encoded data. Each electronic housing includes a switching strategy between reception modes for the two types of signals, including establishing a permanent standby state for continuous signal reception and, upon the reception of a continuous signal, controlling a switchover to the modulated-signal reception mode for a time T, after which the electronic housing processes the data of the potential detected modulated signal and, if no such modulated signal is detected, processes the continuous signal at the origin of the switchover. Furthermore, after the time T, a reverse switchover control to the permanent standby state is delivered.
Abstract:
According to one embodiment, an electronic apparatus includes: an imaging module configured to take an image; a display configured to display information; a detector configured to detect an electrical device from the image taken by the imaging module, wherein the electrical device is configured to consume power; and a display controller configured to control the display to display first information indicative of power consumption of the electrical device and second information, the second information dependent on a type of the electrical device, for evaluating an operation influencing the power consumption of the electrical device.
Abstract:
Exemplary systems and methods for monitoring a current state of a spatially extensive supply network having at least one control station that monitors and controls the supply network and a plurality of sensors that transmit measurement values relating to operating behavior to the at least one control station. Current measurement values are measured at positions on the supply network corresponding to each sensor. Each sensor analyzes measured signal variations and signal trends of the measured current values via an evaluating unit. The measurement values of each respective sensor are transmitted to the at least one control station in data packets at a defined time. At each respective sensor, when the analysis detects an abnormal measurement signal variation, a frequency of transmission of the respective sensor and each adjacent sensor is increased, the respective sensor transmitting the measurement values to the at least one control station or to adjacent sensors to which the respective sensor is connected to through a common supply line and which measure an identical or physically similar quantity.
Abstract:
A distinct dealing shoe having no shuffling functionality receives a shuffled, randomized or ordered group of cards. The cards may be mechanically moved one at a time from a receiving area for the deck to a buffer area where more than one card is temporarily stored. The cards in the buffer area are then mechanically moved to a card delivery area where the cards may be manually removed, one at a time, by a dealer. The cards are read one at a time inside of the dealing shoe, either before the buffer area or after leaving the buffer area, but preferably before the cards are being manually removed from a card delivery area. Information from the card reading may be used for game tracking, hand tracking, player information, and other security issues at casino table card games.