Air data sensing probe with icing condition detector

    公开(公告)号:US10132824B2

    公开(公告)日:2018-11-20

    申请号:US15625323

    申请日:2017-06-16

    Abstract: A system includes a device having a first surface configured to be exposed to airflow about an exterior of an aircraft, the device including a first self-compensating heater configured to heat the first surface, a first current monitor configured to sense a first measurement value representing electrical current flow through the first self-compensating heater, one or more processors, and computer-readable memory encoded with instructions that, when executed by the one or more processors, cause the system to receive aircraft flight condition data and produce an icing condition signal based upon the first measurement value and the aircraft flight condition data.

    INERTIALLY-AIDED AIR DATA COMPUTER ALTITUDE RATE

    公开(公告)号:US20180292430A1

    公开(公告)日:2018-10-11

    申请号:US15483483

    申请日:2017-04-10

    Inventor: Todd Anthony Ell

    Abstract: An air data computer configured to be installed on an aircraft includes an inertial sensor assembly having a plurality of accelerometers and a plurality of rate gyroscopes. The air data computer is configured to: determine a pressure altitude of the aircraft based on measured pressure of the airflow about the exterior of the aircraft; determine an estimated attitude of the aircraft based on rotational rate sensed by the plurality of rate gyroscopes; and determine a vertical acceleration of the aircraft based on the estimated attitude of the aircraft and the acceleration sensed by the plurality of accelerometers. The air data computer is further configured to blend the vertical acceleration and the pressure altitude using a complementary filter to produce a blended altitude rate that is output to consuming systems.

    Method and system for aircraft taxi strike alerting

    公开(公告)号:US10096256B2

    公开(公告)日:2018-10-09

    申请号:US15451969

    申请日:2017-03-07

    Abstract: Apparatus and associated methods relate to calculating position and/or range data of object(s) in a scene external to an aircraft. A light projector is configured to project, from an aircraft projector location, a collimated beam of light in a controllable direction onto the scene. The light projector is further configured to control the intensity of the projected light, based on the controlled direction of the collimated beam of light. The reflected beam is detected by a camera located apart from the light projector. An image processor is configured to use triangulation, to calculate position values and/or range data of the object(s) in the scene. The image processor can be further configured to identify the object(s) in the scene and to produce, based in object(s) in the scene, one or more maps of the scene. The intensity of the collimated beam can be controlled based on the produced maps.

    METHOD AND SYSTEM FOR AIRCRAFT TAXI STRIKE ALERTING

    公开(公告)号:US20180261111A1

    公开(公告)日:2018-09-13

    申请号:US15451969

    申请日:2017-03-07

    Abstract: Apparatus and associated methods relate to calculating position and/or range data of object(s) in a scene external to an aircraft. A light projector is configured to project, from an aircraft projector location, a collimated beam of light in a controllable direction onto the scene. The light projector is further configured to control the intensity of the projected light, based on the controlled direction of the collimated beam of light. The reflected beam is detected by a camera located apart from the light projector. An image processor is configured to use triangulation, to calculate position values and/or range data of the object(s) in the scene. The image processor can be further configured to identify the object(s) in the scene and to produce, based in object(s) in the scene, one or more maps of the scene. The intensity of the collimated beam can be controlled based on the produced maps.

    Optimized epoxy die attach geometry for MEMS die

    公开(公告)号:US10065853B2

    公开(公告)日:2018-09-04

    申请号:US15161724

    申请日:2016-05-23

    Abstract: A differential pressure sensor is a body with first and second interior channels connected to process fluid inlets and separated by a barrier. Each side of a MEMS pressure sensing diaphragm in the barrier is fluidly connected to a process fluid inlet. The diaphragm is mounted on a hollow pedestal such that one side of the diaphragm is fluidly connected to a process fluid inlet through an interior channel in the pedestal that is adhesively attached to an annular bottom of a cylindrical cavity inside the body. The other side of the diaphragm is fluidly connected to the other process fluid inlet and is fluidly isolated from the first fluid inlet by the adhesive at the bottom of the pedestal. Deformation of the diaphragm due to a pressure difference between the process fluid inlets detected by sensors on the diaphragm indicates a differential pressure.

    Symmetric MEMS piezoelectric accelerometer for lateral noise

    公开(公告)号:US10060943B2

    公开(公告)日:2018-08-28

    申请号:US15074567

    申请日:2016-03-18

    Inventor: Weibin Zhang

    CPC classification number: G01P15/0922

    Abstract: Apparatus and associated methods relate to maximizing a signal to noise ratio of an accelerometer by inhibiting signals arising from movements of a proofmass in directions perpendicular to a direction of intended sensitivity. The direction of intended sensitivity of the accelerometer is along an axis of the proofmass. The accelerometer is rendered substantially insensitive to lateral accelerations of the proofmass by making the accelerometer axially symmetric. Two axially-asymmetric acceleration sensing devices are axially engaged in such a manner as to render the coupled sensing devices substantially axially-symmetric. In some embodiments, each acceleration sensor has an axially-thin membrane portion extending from a proofmass portion. The two acceleration sensors can be engaged in an antiparallel fashion at projecting ends of the proofmass portions. An engagement surface will be located about halfway between the axially-thin membrane portions of the two acceleration sensors, thereby causing mechanical symmetry about the engagement surface.

    IMU-AIDED IMAGE REGISTRATION
    239.
    发明申请

    公开(公告)号:US20180225540A1

    公开(公告)日:2018-08-09

    申请号:US15428638

    申请日:2017-02-09

    Inventor: Todd Anthony Ell

    Abstract: An imager device disposed on a moving body captures first image data at a first time and second image data at a second, subsequent time. An inertial measurement unit (IMU) disposed on the moving body senses motion of the moving body between the first time and the second time. The first image data is registered to the second image data based on inertial measurement data corresponding to the sensed motion to produce first registered image data. In response to identifying that image features are common to both the first registered image data and the second image data, the first registered image data is registered to the second image data based on the identified common features to produce output registered image data. In response to determining that no image features are common to both the first registered image data and the second image data, the first registered image data is output.

    CONTROLLED SAMPLING VOLUME OF CLOUDS FOR MEASURING CLOUD PARAMETERS

    公开(公告)号:US20180209887A1

    公开(公告)日:2018-07-26

    申请号:US15411520

    申请日:2017-01-20

    Abstract: Apparatus and associated methods relate to determining a size and/or density of Super-cooled Large Droplets (SLDs) in a cloud atmosphere by comparing detected optical signals reflected from small and large sampling volumes of a cloud atmosphere. In some embodiments, an optical pulse is generated and divergently projected from a first optical fiber. A collimating lens is aligned within the divergently projected optical pulse collimating a portion thereof. The collimated and uncollimated portions of the optical pulse are projected into the small and large sampling volumes of the cloud atmosphere, respectively. The ratio of the collimated to the uncollimated portions can be optically controlled. Signals corresponding to optical pulses having different collimated/uncollimated ratios are backscattered by the cloud atmosphere, detected and compared to one another. A processor is configured to calculate, based on scintillation spike differences between the optical pulses of different collimated/uncollimated ratios, a size and/or density of SLDs.

Patent Agency Ranking