Abstract:
An address decoder selectively applies to word lines of a memory array individual signals of variable polarity, negative or positive, the value of which varies according to a word line address applied to the decoder. The decoder comprises a group decoder delivering signals for selecting a group of word lines of variable polarity, at least one subgroup decoder delivering signals for selecting a subgroup of word lines of variable polarity, and word line drivers each comprising means for multiplexing the group and subgroup selection signals, for selecting and selectively applying one of these signals to a word line. Advantages: reduction in the size of the terminating elements of the decoders in relation with the reduction of the technological pitch in Flash memories.
Abstract:
The present invention relates to a method for managing the stack of a microprocessor comprising a central processing unit and a memory array, the central processing unit comprising registers containing contextual data and a stack pointer, the stack being a zone of the memory array used for saving contextual data upon a switch from a first to a second program. According to the present invention, the method comprises saving contextual data contained in a variable number of registers that varies according to the value of at least one flag stored in a register to be saved. Advantages: optimization of the filling of the stack and of the number of subprograms that can be interleaved.
Abstract:
A circuit for controlling a memory including at least two areas to which access cannot be had simultaneously, the circuit including first circuitry for storing a series of read and/or write instructions separately for each of the areas, and second circuitry for detecting that a first instruction intended for a first area is a predetermined instruction to be followed by a period during which the first area can receive no other instruction, and third circuitry for, during the period, providing instructions to another memory area.
Abstract:
A device for determining the version of metal mask utilized for producing a given metal layer (Metal3) in an integrated circuit including a plurality of metal layers (Meta0, . . . , Metal3), and any modification made to the given metal layer (Metal3) requiring generation of a new version of the corresponding metal mask. The device includes a cell (Cell) integrated into the metal layer (Metal3) including at least a first voltage source (Vdd) for supplying a first voltage level, at least a second voltage source (GND) for supplying a second voltage level, and an output bus composed of at least one conductor wire (S1, S2) connected selectively to one of the first and second voltage sources as a function of the version of metal mask used to produce the metal layer, so as to generate a binary output signal representative of the mask version utilized.
Abstract:
A memory cell with at least two detectable states among which is an unprogrammed state, comprising, in series between two terminals of application of a read voltage, at least one first branch comprising: a pre-read stage comprising, in parallel, two switchable resistors having different values with a first predetermined difference; and a programming stage formed of a polysilicon programming resistor, a terminal of the programming resistor being accessible by a programming circuit capable of causing an irreversible decrease in its value.
Abstract:
A generator of at least one pulse width modulated signal, including: a generator of a sawtooth signal a generator of high and low reference signals defining, based on a set-point signal, a linear range of each ramp of the sawtooth signal at least one element of comparison of the sawtooth signal with each of the reference signals and at least one element of logic combination of the comparison results, providing the pulse width modulated signal.
Abstract:
An integrated circuit is provided that includes a substrate incorporating a semiconductor photodiode device having a p-n junction. The photodiode device includes at least one capacitive trench buried in the substrate and connected in parallel with the junction. In a preferred embodiment, the substrate is formed from silicon, and the capacitive trench includes an internal doped silicon region partially enveloped by an insulating wall that laterally separates the internal region from the substrate. Also provided is a method for fabricating an integrated circuit including a substrate that incorporates a semiconductor photodiode device having a p-n junction.
Abstract:
A chip includes CPU (12), memories (13,14) for programs and data, peripheral units (18,19) for interacting with the outside world, and an internal RC oscillator (17) for providing clock signals. One of the peripheral units (18) includes a timer counter incremented at a frequency derived from the RC oscillator. The method does not try to change the frequency of the RC oscillator. Instead, an external calibration source (21) is connected to a capture input of the timer unit to provide a signal having a reference frequency, e.g. the mains frequency. The counter is sampled on active edges of that signal, and the sampled values are processed to derive a calibration ratio. After these calibration steps, a software correction is applied to parameters handled by programs stored in memory based on the calibration ratio to compensate for frequency variations of the RC oscillator.
Abstract:
Process for fabricating a transistor comprises producing source and drain extension regions, consisting in forming a gate region on a semiconductor substrate and in implanting dopants into the semiconductor substrate on either side of and at a certain distance from the gate of the transistor. The producing of the source and drain extension regions consists in forming an intermediate layer (Cl) on the sidewalls of the gate (GR) and on the surface of the semiconductor substrate. This intermediate layer is formed from a material that is less dense than silicon dioxide. The implantation of dopants (IMP) is carried out through that part of the intermediate layer that is located on the semiconductor substrate.
Abstract:
A control device is provided for a switching power supply having an output that supplies an output voltage. The switching power supply includes an inductor and two changeover switches for controlling coupling of the inductor. The control device includes a first capacitor for charging with continuous current from a 0 V voltage level, a second capacitor for discharging of the continuous current from a predetermined voltage level that is greater than the voltage level of a DC power supply, and a comparison circuit. The comparison circuit compares the output voltage of the switching power supply with voltage levels of the first and second capacitors and generates control signals for controlling the two changeover switches of the switching power supply. Also provided are switching power supplies having such control devices and a method for controlling a switching power supply.