Abstract:
A micro-machine switch in accordance with the present invention includes a supporter having a predetermined height relative to a surface of a substrate, a flexible cantilever projecting from the supporter in parallel with a surface of the substrate, and having a distal end facing a gap formed between two signal lines, a contact electrode formed on the cantilever, facing the gap, a lower electrode formed on the substrate in facing relation with a part of the cantilever, and an intermediate electrode formed on the cantilever in facing relation with the lower electrode. The micro-machine switch can operate at a lower drive voltage than a voltage at which a conventional micro-machine switch operates, and can enhance a resistance of an insulating film against a voltage.
Abstract:
Die Erfindung betrifft ein mikromechanisches Bauteil mit einer festen mikromechanischen Struktur, die mindestens zwei aus einer oder mehreren leitenden Schichten gebildete Elektroden umfaßt, und einer beweglichen mikromechanischen Struktur in einem Hohlraum (H) , die ein leitendes Schaltelement (S) bildet, wobei mithilfe des Schaltelementes ein elektrischer Kontakt zwischen den Elektroden herstellbar ist. Der Hohlraum kann eine z.B. gitterförmige Sicherung gegen Herausfallen des Schaltelementes und/oder einen Verschluß nach oben aufweisen. Die Erfindung betrifft ferner ein Mikrosystem mit einer integrierten Schaltung und dem mikromechanischen Bauteil, sowie Herstellverfahren für das Bauteil und das Mikrosystem. Das Bauteil und die Schaltung können dabei auf sehr einfache Weise gleichzeitig hergestellt werden.
Abstract:
A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.
Abstract:
A method for fabricating an MEMS switch including providing a substrate and printing at least one metal bias electrode, at least one metal connection pad and at least one metal contact pad on the substrate. The method then prints a sacrificial layer on the substrate and over the at least one bias electrode, and prints a flexible beam structure on the sacrificial layer. The sacrificial layer is then removed by dissolving the sacrificial layer in a wet solution to release the beam structure so that the beam structure is spaced some distance from the at least one bias electrode and the contact pad.
Abstract:
Various embodiments of the invention reduce stiction in a wide range of MEMS devices and increase device reliability without negatively impacting performance. In certain embodiments, stiction recover is accomplished by applying electrostatic forces to electrodes via optimized voltage signals that generate a restoring force that aids in overcoming stiction forces between electrodes. The voltage signals used within a stiction recovery procedure may be static or a dynamic, and may be applied directly to existing electrodes within a MEMS device, thereby, eliminating the need for additional components. In some embodiments, the voltage is estimated or calibrated and swept through a range of frequencies that contains one or more resonant frequencies of the mechanical structure that comprises the parts to be detached.
Abstract:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes and a contact point on a substrate. The method further includes forming a MEMS beam over the fixed actuator electrodes and the contact point. The method further includes forming an array of actuator electrodes in alignment with portions of the fixed actuator electrodes, which are sized and dimensioned to prevent the MEMS beam from collapsing on the fixed actuator electrodes after repeating cycling. The array of actuator electrodes are formed in direct contact with at least one of an underside of the MEMS beam and a surface of the fixed actuator electrodes.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes and a contact point on a substrate. The method further includes forming a MEMS beam over the fixed actuator electrodes and the contact point. The method further includes forming an array of actuator electrodes in alignment with portions of the fixed actuator electrodes, which are sized and dimensioned to prevent the MEMS beam from collapsing on the fixed actuator electrodes after repeating cycling. The array of actuator electrodes are formed in direct contact with at least one of an underside of the MEMS beam and a surface of the fixed actuator electrodes.