Abstract:
The present invention relates to a coating for high-temperature applications with tribological stress. The coating comprises a multi-layer system and a top lubrication layer, the top lubricant layer containing, as a main component, molybdenum.
Abstract:
[Problem] To exchange the roller bearing that has been used in a scroll compressor mounted in an automobile with a m slide bearing. To provide a slide bearing having a performance that is at least equivalent to that of a roller bearing.[Solution] The slide bearing results from baking onto a back metal a sliding layer of 5-60 wt % graphite having an average diameter of 5-50 μm and a graphitization degree of at least 0.6, the remainder comprising a polyimide resin and/or a polyamide-imide resin. The form of the graphite has: (a) an average shape factor (YAVE) as defined of 1-4 for the particles excluding the minute particles that are no greater than 0.5 times the average diameter, and there being at least 70% by number of particles having a shape factor (Y) in the range of 1-1.5; or (b) graphite particles having a particle ratio of at least 0.5 being at least 50% of the total by number.
Abstract:
The lubricated environment incorporates a friction modifier, and a coating is applied to the part. The coating is chromium nitride and the friction modifier is MoDTC. The chromium nitride presents an NaCl-type crystallization and a microhardness of 1,800 +/−200 HV.
Abstract:
The present invention relates to a method for applying hexagonal boron nitride to a rough surface, wherein it is intended for the boron nitride to be provided as a temperature-resistant lubricant of the surface. According to the invention, a pin composed of hexagonal boron nitride is rubbed with pressure over the rough surface, such that abraded boron nitride adheres to the surface.
Abstract:
Disclosed herein is a lubrication device comprising a solid lubricant disposed between and in contact with a first electrode and a second electrode dimensioned and arranged such that application of an electric potential between the first electrode and the second electrode sufficient to produce an electric arc between the first electrode and the second electrode to produce a plasma in an ambient atmosphere at an ambient pressure which vaporizes at least a portion of the solid lubricant to produce a vapor stream comprising the solid lubricant. Methods to lubricate a surface utilizing the lubrication device in-situ are also disclosed.
Abstract:
A solid stick composition for use on steel surfaces that are in sliding or rolling-sliding contact. The solid stick composition comprises a vinyl ester resin, for example, from about 20 to about 80 weight percent vinyl ester resin, a solid lubricant, for example from about 0 to about 80 weight percent lubricant, and optionally a friction modifier, for example from about 0 to about 40% weight percent friction modifier, or a combination of a solid lubricant and a friction modifier. The solid stick comprises at least one of the lubricant or the friction modifier. A method of controlling friction between a metal surface and a second metal surface by applying the solid stick composition to one or more than one of the metal surfaces is also disclosed as well as a method of reducing lateral force in a rail system comprising applying the solid stick composition onto a wheel or rail surface.
Abstract:
Grease for a slide bearing, which can suppress unusual noise attributable to a slip caused between a shaft and a bearing when a machine is stopped. In slide bearing grease 24 supplied to between a slide bearing 16 formed of a porous sintered alloy-made bushing having pores 30 impregnated with lubricating oil 31 and a shaft 22 inserted in the slide bearing 16 and supported to be slidingly rotatable in the circumferential direction, the slide bearing grease 24 employs base oil having dynamic viscosity of 10-70 mm2/s at 40° C. and exuding under a load of the shaft 22 to form an oil film 35 between the slide bearing 16 and the shaft 22.
Abstract:
An image-bearing member protecting agent including: a hydrophobic organic compound (A); an inorganic lubricant (B); and inorganic fine particles (C), wherein each of the inorganic fine particles (C) has a specific surface area of 2.0 m2/g to 6.5 m2/g.
Abstract:
In a slide member in which an overlay is provided on a slide receiving surface of a base member, the overlay is formed by attaching a mixed solid lubricant on the slide receiving surface of the base member. The mixed solid lubricant is made by mixing a large amount of hydrogen containing solid lubricant which contains a large amount of hydrogen, and a small amount of hydrogen containing solid lubricant which contains a smaller hydrogen amount than the large amount of hydrogen containing lubricant. Thereby, a lubricant absence region where the solid lubricant is absent in a thickness direction is formed on the slide receiving surface of the base member after sliding, and an oxidized portion where the base member is oxidized is formed in the lubricant absence region.
Abstract:
In one embodiment, a substrate, for example a tool used in hot metalforming operations, is coated with an enamel nanoparticulate graded coating. The nanoparticles in the coating may be boron nitride nanoparticles. The coating may include a first portion adjacent a surface of the substrate, and a second portion adjacent the first portion. The first portion of the coating may have a lower volume fraction of nanoparticles than the second portion. The first portion has excellent adhesion to the surface of the substrate, and the second portion reduces friction and wear. The coated tool may be formed by applying at least one layer of a coating mixture to a surface of the tool and heating the coating mixture. A metal workpiece may be formed into an article by contacting the metal workpiece against the coated surface of the tool.