Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object. In one aspect, the hyperspectral imaging system includes a fore optic with optics for acquiring and projecting an image from a remote object, a scannable slit mechanism with a plurality of slits for receiving the projected image, where the projected image simultaneously illuminates two or more of the plurality of slits, a spectrometer for receiving and dispersing images passing through the two or more simultaneously-illuminated slits, and a two-dimensional image sensor for recording images received from the spectrometer, where the images received from different slits are recorded on different sets of detection elements of the two-dimensional image sensor.
Abstract:
An airborne hyperspectral scanning system with a reflective telecentric relay including a system housing fore-optics, mounted in the housing, an imaging spectrometer mounted in the housing, the imaging spectrometer comprising a spectrometer slit, the spectrometer slit having an exit side and an entrance side, a focal plane array, a fold mirror, and at least three spectrometer mirrors, ordered sequentially, and in optical alignment with each other, and a reflective telecentric relay, mounted in the housing between the fore-optics and the imaging spectrometer, the reflective telecentric relay comprising a collimator module, a scanning mirror module, and an objective module, the objective module being situated to receive intermediate image from the fore-optics and reflect a collimated beam to the scanning mirror image between the collimator module and the objective module, wherein the objective module is situated to form a telecentric image at the entrance of the spectrometer slit.
Abstract:
A spectrometer comprises a package having a stem and a cap, an optical unit arranged on the stem, and a lead pin penetrating through the stem. The optical unit has a dispersive part for dispersing and reflecting light entering from a light entrance part of the cap, a light detection element for detecting the light dispersed and reflected by the dispersive part, a support for supporting the light detection element such as to form a space between the dispersive part and the light detection element, a projection projecting from the support, and a wiring electrically connected to the light detection element. The projection is arranged at such a position as to be in contact with the stem. The lead pin is electrically connected to a second terminal part of the wiring arranged in the projection.
Abstract:
A spectrometer, in particular for being installed in a sensor module of a fluid analysis system, including a radiation source and the following components defining a beam path or being arranged along the beam path: a sample chamber for a fluid to be examined, a first lens, a diffraction element, a second lens and a detector. A restriction aperture for restricting the effective diameter of the light beam incident on the diffraction element is provided between the sample chamber and the diffraction element.
Abstract:
An optical wavelength dispersion device includes a first substrate; an input unit formed on the first substrate having a slit for receiving an optical signal; a grating formed on the first substrate for producing a first light beam form the optical signal for outputting; and a second substrate covered on the top of the input unit and the grating; wherein the input unit and the grating are formed from a photo-resist layer by high energy light source exposure.
Abstract:
Disclosed is a spectrum measuring apparatus for shortening such a measurement time period for an object being measured including two or more mutually different measurement portions as is required for the spectrum measurements of the lights from individual measurement portions. The spectrum measuring apparatus comprises a slit group having two or more slits, a spectroscope for separating the lights extracted by the slit group, for the individual slits, and a measuring unit for measuring the intensities of the individual components, which are separated by the spectroscope, for the slits. The individual slits extract such ones of the lights coming from an object being measured including two or more mutually different measurement portions, as come from the individual measurement portions.
Abstract:
A system and method of photon trapping spectroscopy to vary the path length of light for use in spectroscopy. The systems and method include a rotating reflector with slits for selectively permitting light to enter and exit into a reflection cavity containing a sample to be analyzed. After entering the cavity, but before exiting, the light is trapped and repeatedly reflects back and forth through a sample, effectively increasing the path length of light through a sample. The effective path length is quickly adjustable by altering the rotation speed of the rotating reflector to alter the time in which the light is trapped within the cavity. The systems and methods provide a spectroscope with a wide dynamic range, low detection limits, and usable with broadband and monochromatic light sources throughout the optical region (ultraviolet to infrared).
Abstract:
For achieving balance between manufacturing effort and spectrometer accuracy, a spectral decomposition device is not completely integrated into a substrate stack, but, for example, after manufacturing the substrate stack in the manufacturing process, the opportunity of compensating inaccuracies in substrate stack manufacturing is given by mounting a component with a suitable optical functional element to a window, like, e.g., an entry, exit or intermediate window of the substrate stack, to at least partially cover the respective window, wherein the optical functional element is, for example, an entry aperture, an exit aperture or also part of an optics or an optical element having a spectrally decomposing effect. The substrate stack may be manufactured on wafer level and the manufacturing tolerances in this manufacturing may be loosened, as the subsequent substrate stack-individual mounting or even window-individual mounting of the components may compensate the fluctuations which resulted in substrate stack manufacturing.
Abstract:
An entry slit panel for a push-broom hyperspectral camera is formed at least partly from a silicon wafer on which at least one companion sensor is fabricated, whereby the companion sensor is co-planar with the slit and detects light imaged on the panel but not on the slit. In embodiments, the companion sensor is a panchromatic sensor or a sensor that detects light outside the wavelength range of the camera. At least a region of the wafer is back-thinned to a thickness appropriate for a diffraction slit. The slit can be etched or laser cut through the thinned region, or formed between the wafer and another wafer or a conventional blade. The wafer can be back-coated or metalized to ensure its opacity across the camera's wavelength range. The companion sensor can be located relative to the slit to detect scene features immediately before or after the hyperspectral camera.
Abstract:
A system for performing high-speed, high-resolution imaging cytometry includes a scanning region that is illuminated by light including at least first and second wavelength bands. The system also includes a cell transport mechanism that transports a cell through the scanning region such that the cell is illuminated. The system further includes a set of at least one linear light sensor, and an optical system that selectively directs light emitted from the cell to two portions of the linear light sensor set such that emitted light in a third wavelength band is primarily directed to a first portion of the linear light sensor set, and emitted light in a fourth wavelength band is primarily directed to a second portion of the linear light sensor set. The system repeatedly takes readings of light falling on the linear light sensor set while the cell is transported through the scanning region.