Abstract:
A method for detecting, tracking and locating submarines (24) utilizes pulsed coherent radiation from a laser (12) that is projected down through a water column, with particles in the water producing speckle from backscatter of the random particle distribution, with correlation of two closely time-spaced particle-based speckle patterns providing an intensity measurement indicative of the presence of a submarine. Subsurface submarine movement provides a subsurface wake which causes movement of particles such that two closely-spaced “snapshots” of the returns from particles in the same water column can detect particle movement due to the wake. The magnitude of the speckle pattern change indicates particle movement. In one embodiment, the return signals are imaged onto an intensified CCD or APA array that capture two successive laser pulses through the utilization of dual pixel registered cameras. Note that in the subject system, phase information is converted to measurable intensity information relating to particle motion.
Abstract:
A combination of aVivaldi slot and a meander line loaded antenna which exhibits an ultra wideband characteristic with de Vivaldi notch expanding the high end and with the meander line loaded antenna portion reducing the low frequency cut-off. When these antennas are arrayed, this array exhibits a single lobe and an ultra wide 100: l bandwidth. The Vivaldi notch portion of the antenna accommodates the higher frequencies, whereas the meander line loaded antenna portion of the antenna accommodates the lower frequencies, there being a smooth transition region between the Vivaldi and meander line portions of the antenna and no discontinuity. A polarity switchable embodiment and a concatenated embodiment are also disclosed.
Abstract:
Interference cancellation techniques for use in a wireless multicarrier communications system where signals from multiple wireless networks might be present and interfering with the detection and demodulation processes are disclosed. Interference cancellation (103) is applied to the interfering network before removing same-system interference (107). By removing the contribution of all interfering systems from a receiver's aggregate signal, the receiver is capable of detection and demodulation. Performance can be further improved by including an additional level of interference cancellation within the system of interest to separate the individual user of interest.
Abstract:
A reconfigurable distributed signal processing system (10) uses an object-oriented component-framework architecture in which the system permits large-scale software reuse. This is accomplished by the use of a framework and a number of reusable, reconfigurable software components (12) that are hardware independent. The components communicate over a data fabric (14) using open published APIs over one or more data communications mechanisms. Interchangeable software components are used that perform the signal processing. Interchangeability is assured by each component meeting a required interface in which the component inherits the required interface elements from component base classes. This use of inheritance to assure interface compliance also reduces the programming work required for developing a component. Most importantly, the interchangeable components are reconfigurable into various systems at runtime, as defined by a Plan. A Plan (18) is a schematic of the configuration of the various components to be used to solve a particular signal processing problem which includes the list of components, what computer each component is to execute on, how the components are interconnected, and the initial parameter values of the components. The system functionality and capability can be reconfigured at runtime based on a Plan read by a software element of the framework, the Framework Manager (16). Moreover, the source code for the components is platform independent. The system is able to use heterogeneous commercial off-the-shelf hardware to minimize equipment costs and lower non-recurring engineering costs as well. The system uses the object-oriented programming and software development to reduce time to market and to ensure program success while at the same time exploiting a standard development methodology.
Abstract:
GaAs substrates with compositionally graded buffer layers for matching lattice constants with high-Indium semiconductor materials such as quantum well infrared photoconductor devices and thermo photo voltaic devices are disclosed.
Abstract:
A method and system for training an audio analyzer (114) to identify asynchronous segments of audio types using sample data sets, the sample data set being representative of audio signal which segmentation is desired. The system and method then label asynchronous segments of audio samples, collected at the target site, into a plurality of categories by cascading hidden Markov models (HMM). The cascaded HMMs consist of 2 stages, the output of the first stage HMM (208) being transformed and used as observation inputs to the second stage HMM (212). This cascaded HMM approach allows for modeling processes with complex temporal characteristics by using training data. It also contains a flexible framework that allows for segments of varying duration. The system and method are particularly useful in identifying and separating segments of the human voice for voice recognition systems from other audio such as music.
Abstract:
A low radar cross-section monocone antenna is provided with an ultra-wide bandwidth in the microwave region of the electromagnetic spectrum running from 1 gigahertz to 18 gigahertz by decreasing the low frequency cutoff through enlarging the overall dimensions of the cone while at the same time maintaining the base diameter of the apex of the cone to the initially-set dimension that establishes the high frequency cutoff of the antenna. The apex of this cone that serves as its feed point has a base diameter that results in the wide bandwidth, with the monocone antenna having a 5 dBi gain and omnidirectional coverage.
Abstract:
A cavity-backed wideband slimline flat panel antenna array for providing a steerable beam includes an array of slot antennas, each of which fed by its own individual dipole radiator, with the wide bandwidth being due to the matching impedances of the slot antenna and dipole radiator across the entire frequency band. In one embodiment, an upstanding printed circuit balun feed is connected to each dipole. The dipole elements are located to either side of a slot, and are arrayed on the underneath side of a dielectric layer under the substrate into which the slots are formed, with the dipole elements directly fed by individual upstanding printed circuit baluns which are arrayed beneath the individual slots antennas. The use of the dipole elements, in addition to providing a wider operational bandwidth, also permits feeding each of the slots without having to use striplines which would have to cross each other and therefore not work. A wide bandwidth steerable flat panel array utilizing the dipole fed slot antennas may be mounted on the deck house or other flat structural component of a vessel so as to perform a "smart skin" function in which the antenna not only functions as a radiating element, but also as a structural part of the vessel itself. In commercial applications, the flat panel array may be incorporated into the wall of a building such that point-topoint communications between buildings may be accomplished through an antenna which is also a structural part of the building. Note that the beams from the antenna are aimable by appropriately phasing the array to point at a receiving antenna on an adjacent building.
Abstract:
A switched meander line structure is substituted for a lumped element coupler (10) for an order of magnitude increase in gain due to the use of the switched meander line architecture. The use of the meander line (20) with relatively wide and thick folded legs markedly decreases I2R losses over wire inductors whose wire diameters at one-tenth of an inch contribute significantly to I2R losses. Additionally, placing solid state switches to short out various sections of a multi-leg meander line at high impedance nodes reduces I2R losses across the switching elements in the coupler. It has been found that, regardless of the impedance of the antenna, this impedance may be matched by switching in and out various sections of a folded multileg meander line due to the fact that the square of the sum of the capacitive reactances of the meander line decreases with frequency in synchronism with the unloaded Q of the meander line, thus to provide the ability to maintain a good match over frequency as the meander line is tuned to achieve resonance by shorting out combinations of sections of the meander line. The result of the substitution of the meander line architecture for the lumped element coupler is the reduction of losses associated with the use of wire inductors and losses due to the interposition of solid state switches at high-current nodes.
Abstract:
A system is provided for assisting in the detection and tracking of narrowband signals arriving at an antenna array operating over a wide detection bandwidth and in a crowded RF environment. Since the nature of the detection mission is constrained to be a general search, the system does not attempt to detect signals of interest via matched filtering mechanism (i.e. training sets), but exploits general properties such as power, frequency, time and angle of arrival. For the purposes of providing sufficient Frequency/Time resolution as well as to avoid array overloading in the detection process, the digitized wideband streaming data is frequency channelized using a sufficient high revisit rate for the signal set of interest, constrained by the required feature detection accuracy or environment adaption rates. Within each frequency subchannel, efficient array signal subspace tracking techniques are used to separate and track spatially separated cochannel signals. Subspace tracking allows the efficient update of the signal subspace, useful for direction finding and copy applications, as well as determining the number of signals present in a frequency channel. Since the frequency channelization of the detection system may not match that of the detected signal, the combination of Time/Frequency/Space information is used to cluster or group frequency subchannels and provide a higher degree of signal detection capability with an increased robustness against false signal detections.