Abstract:
A thermal control system for controlling a temperature of a fluid delivered to a patient is provided. The system includes a thermal control unit having a fluid inlet and outlet, a circulation channel, a pump, a heat exchanger, a fluid temperature sensor and a controller that controls the heat exchanger in order to automatically bring a patient's temperature to a target temperature. In some embodiments, the control unit includes a user interface adapted to receive a non-temperature patient parameter (e.g. BMI) that the controller uses, along with patient core temperature readings, to control the heat exchanger. The controller may also or alternatively control the heat exchanger based on both core and peripheral patient temperature readings. An auxiliary thermal therapy device for controlling a temperature of the patient's blood, air breathed by the patient, and/or other fluid, may also be controlled by the thermal control unit.
Abstract:
An autonomous medical waste collection assembly comprises a base adapted to be positioned near a patient. At least one wheel is powered to move the base along a floor surface. A waste collection unit is coupled to the base for receiving medical waste from the patient. The waste collection unit includes a canister for holding the medical waste. A controller is operable to initiate a waste disposal protocol. The waste disposal protocol includes transmitting a movement signal to the powered wheel for automatically moving the autonomous medical waste collection assembly away from the patient to a disposal station. A user input device is in communication with the controller. The user input device is adapted to provide a user input signal in response to being actuated by a user. The controller is configured to initiate the waste disposal protocol in response to receiving the user input signal.
Abstract:
A system includes a battery having a battery controller and a container including a plurality of receptacles, each receptacle being shaped to receive the battery. The system also includes a charging device including a plurality of charging bays, wherein each charging bay is shaped to receive a respective receptacle of the plurality of receptacles. Each charging bay includes a first antenna configured to provide charging power to the battery, a second antenna configured to communicate with the battery controller, and a charger controller. The charger controller is configured to detect a presence of the battery within a receptacle associated with a charging bay, establish communication with the battery using the second antenna while the first antenna is deactivated, pair the battery to the charging device, activate the first antenna after the battery is paired, and provide charging power to the battery using the first antenna.
Abstract:
Surgical tool systems (10) and methods of use thereof for performing endoscopic surgical procedures, which systems (10) include a handpiece (11) and a surgical accessory (12) which detachably connects to the handpiece (11). The surgical accessory (12) has a distal end which defines a cutting head (104) incorporating two different types of tissue-treating areas (110, 119).
Abstract:
A stabilization system and implant for preventing relative motion between tissue sections of a patient, for example, an ilium and a sacrum defining a sacroiliac joint. The stabilization system comprises an implant comprising an elongate trunk, a proximal anchor configured to be positioned within the ilium, and a distal anchor configured to be positioned within the sacrum. The proximal anchor comprises a deformable feature configured to engage the ilium and the distal anchor comprises an expandable member configured to engage the sacrum. The stabilization system further comprises a tool removably coupled to the anchor to insert the implant in the patient and selectively engage the anchors with the respective bones. The implant is configured to be implanted through a minimally invasive incision.
Abstract:
An elongate embolectomy device having a radially constrained configuration and a radially expanded configuration, the embolectomy device being formed out of a plurality of elongate clot engaging structures, each clot engaging structure comprising a plurality of interconnected struts forming an open cell pattern, wherein, when the embolectomy device is in the radially expanded configuration, the clot engaging structures each have a semi-tubular arcuate profile, including a convex face and an concave face facing opposite the convex face, extending along a length of the embolectomy device, the clot engaging structures being longitudinally disposed relative to each other such that the concave faces are facing radially outward, and the convex surfaces are facing radially inward, respectively, relative to a longitudinal axis of the embolectomy device.
Abstract:
Systems, apparatuses, and methods directed to the collection and analysis of data related to a patient during an emergency advanced airway management process. The collected data may be obtained using various types of sensors, with the data collection process being managed or coordinated by a suitable system, such as a combination monitor-defibrillator. The monitor- defibrillator (alone or in combination with other system elements, such as a wired or wireless communications capability, a processor, data storage, etc.) may include a capability to process some or all of the acquired data, and in response to generate a summary report containing one or more figures-of-merit that may be of assistance in evaluating the airway management process.
Abstract:
A medical device management system includes a plurality of medical devices communicating with a local area network. A local network appliance forwards device data gathered from the medical devices to a cloud based service that processes and organizes the device data. The cloud based service may also be in communication with a sales database, an ERP system, a manufacturing database, and/or other databases. Users may request device data from the cloud based service using a conventional web browser. The device data may include location data, usage data, repair data, etc. In some cases, device data may come from a variety of sources and the cloud based service collates the multi-source data together into a set of records that form a digital replica of the actual medical device.
Abstract:
Control console for a powered surgical tool (310) that includes a transformer (250) with a secondary winding (264) across which the tool drive signal is present. Also internal to the transformer is a matched current source that consists of leakage control winding (246) and a capacitor. The current sourced by the matched current source at least partially cancels out leakage current that may be present.
Abstract:
A personal protection system including a helmet to which a garment is mounted. The helmet includes an electrically powered assembly such as a fan. At least one button for regulating operation of the electrically powered assembly is mounted to the face shield of the garment. The helmet includes a detector that is connected to and monitors the state of the button. When the button is depressed, the detector sends a signal to a controller that regulates the actuation of the electrically powered assembly. The controller then sets the operating state of the assembly so that the assembly operates in the state desired by the individual wearing the personal protection system based on the depression of the control button.