Abstract:
Wireless communication in a heterogeneous network may be facilitated by establishing connections with femto nodes based on page notifications from macro nodes to user equipment (UE). A UE in idle mode may monitor paging resources provided by a macro node, discover presence of a femto node based on signals received from the femto node, and establish a communicative connection with the femto node based on a page notification received from the macro node over the paging resources.
Abstract:
Confusion associated with a physical layer identifier is detected and action taken to address this confusion. In some aspects, confusion detection involves determining whether signals such as beacons or pilots that are associated with the same physical layer identifier are also associated with different timing (e.g., different observed time difference (OTD) values). In some aspects, confusion detection involves determining whether an inordinate number of handover failures is associated with a particular physical layer identifier. In some aspects, the action taken upon detecting physical layer identifier confusion involves ensuring that an access terminal is not handed over to an access point that uses that physical layer identifier. In some aspects, the action taken upon detecting physical layer identifier confusion involves resolving the confusion.
Abstract:
The present disclosure presents methods and apparatuses for improved paging area identifier selection in low power base stations. In some examples described in the present disclosure, a method is provided for updating a paging area identifier, which may include observing one or more parameters of signals received in a wireless network, updating a previously selected paging area identifier to a new paging area identifier based at least in part on the one or more parameters, and transmitting the new paging area identifier. In addition, example methods are provided for paging devices in a wireless network, which may include determining a paging area identifier related to a last known low power base station for a device, determining a plurality of low power base stations using the paging area identifier, and causing the plurality of low power base stations to transmit a paging signal for the device.
Abstract:
Systems and methods for identifying an address of a femto node (810) during handoff of an access terminal from a femto node (810) to a macro node (805). In one embodiment, the femto node assigns a unique identifier to the access terminal. The access terminal passes the unique identifier to the macro node (1110). The macro node partitions the unique identifier to determine the address of the femto node (1150), (1160), (1170). In another embodiment, the femto node registers its address with a domain name system (1760). The macro node queries the domain name system to obtain the address of the femto node (2040). In another embodiment, the macro node sends the unique identifier to a proxy (2170). The proxy partitions the unique identifier to determine the address of the femto node (2370).
Abstract:
Ambiguity (e.g., confusion) associated with access point identifiers may be resolved by querying candidate target access points and/or by using historical records indicative of one or more access points that the access point has previously accessed. For example, messages may be sent to access points that are assigned the same identifier to cause the access points to monitor for a signal from an access terminal that received the identifier from a target access point. The target access point may then be identified based on any responses that indicate that a signal was received from the access terminal. In some aspects the access points subject to being queried may be selected using a tiered priority. In addition, it may be determined based on prior handoffs of a given access terminal that when that access terminal reports a given identifier, the access terminal usually ends up being handed-off to a particular access point. Accordingly, a mapping may be maintained for that access terminal that maps the identifier to that access point so that the mapping may be used to resolve any future confusion associated with the use of that identifier by that access terminal.
Abstract:
In a communication system in which a mobile station accessing the main network via a plurality of base stations, the mobile station can freely select any of the base stations as a forward link (FL) serving station. In addition, the mobile station can also freely select another or the same base station as a reverse link (RL) serving station. The mobile station has stored in its memory a plurality of routes corresponding to the plurality of base stations, with each route dedicatedly assigned to a particular base station. During handoff of one base station to another as either the FL or the RL serving station, exchanged data packets are processed in the respective routes of the base stations involved.
Abstract:
A network configurator can dynamically configure a device to couple network data between other devices in a wireless network. The devices can include two independent wireless transceivers that can each operate within different frequency bands, such as the 2.4 GHz and 5.0 GHz frequency bands. The configuration of the independent wireless transceivers can be based, at least in part, on device capabilities of the wireless transceivers, channel conditions, and a quality of service associated with the other wireless stations in the wireless network.
Abstract:
Techniques for switching a user equipment (UE) between wireless systems by first establishing a connection with a target system before disconnecting from a serving system are disclosed. In one design, the UE may initially communicate with a first wireless system (e.g., a WLAN system) of a first radio technology. The UE may receive a page to establish a connection with a second wireless system (e.g., a cellular system) of a second radio technology. The first and second wireless systems may be part of a small cell. The page may be sent by the second wireless system to the UE in response to a decision by a network entity to switch the UE from the first wireless system to the second wireless system. The UE may establish a connection with the second wireless system in response to the page and may thereafter terminate communication with the first wireless system.
Abstract:
Various arrangements for anticipating an electrical load are presented. A plurality of indications of locations of a vehicle may be received. A travel pattern of the vehicle based on the plurality of indications of locations of the vehicle may be determined. The travel pattern may indicate a destination and an expected travel time to arrive at the destination. A current location of the vehicle may be received. At least partially based on the current location of the vehicle, whether the vehicle is expected to conform to the travel pattern may be determined. An anticipated electrical load at the destination may be determined at least partially based on the travel pattern.
Abstract:
Techniques for enhanced backhaul flow control are provided. In an exemplary embodiment, a backhaul control system is described that comprises a base station controller (BSC), a backhaul network, and a base transceiver station (BTS). Each is responsive to data and messaging transmitted and received. In one aspect, the BTS includes a queue and a controller. The amount of data in a queue is adjusted by a controller based upon calculating a target queue size value. The controller non-uniformly adjusts the amount of data in a queue based upon a target queue size value which is based upon communication system parameters. The target queue size and amount of data in a queue is adjusted so as to reduce buffer underrun, decrease system latency, and increase communication system throughput.