Abstract:
The present invention relate to three dimensional porous polysaccharide matrices able to induce mineralisation of a tissue in osseous site, as well as in non-osseous site, in the absence of stent cells or growth factors.
Abstract:
A rigid flow control device includes a porous rigid body having an outer surface and an inner surface. The body defines a flow path and is formed from a material operatively arranged with a surface energy less than that of the fluid for passively impeding an undesirable component of the fluid more than a desirable component of the fluid.
Abstract:
The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
Abstract:
The present invention relate to three dimensional porous polysaccharide matrices able to induce mineralisation of a tissue in osseous site, as well as in non-osseous site, in the absence of stem cells or growth factors.
Abstract:
A cellulose sponge cloth based containing a net or grid as internal reinforcement is provided, with the sponge cloth further including a uniform distribution of fibers and/or durably softening polymers that are not water-leachable. The sponge cloth is produced by the viscose process by mixing with the fibers and/or the softening polymers and the pore former with cellulose xanthate and forming the resulting sponge cloth raw material into a thin layer. The grid or net is placed onto this layer, followed by a further layer of the sponge cloth raw material. Alkaline or acidic coagulation and regeneration baths and optional wash baths are used to dissolve the pore former out of the sponge cloth and regenerate the cellulose from the cellulose xanthate. The sponge cloth is bend-resistant, it does not break in the dry state. The sponge cloth is envisioned for cleaning and decontamination in industry and the home.
Abstract:
The present invention provides processes for the synthesis of porous polymeric materials. The processes provide low cost and/or less complicated methods of controlling pore size distribution in polymeric materials.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, would dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rats. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Bubble solutions containing invert sugar are disclosed. The bubbles are long-lasting bubbles which can be produced by children at play. Components in the bubble formulation may include a water soluble polymer, invert sugar, surfactants, water, and vegetable syrup.