Abstract:
The invention relates to compounds of the structure of formula I and II:
where X is selected from the group consisting of O, S and NH; Y, A and B are independently selected from the group consisting of N and CH; D, E and F are independently selected from the group consisting of CH, N, O and S; the symbol ---- represents a single or a double bond; and R1, R2 and R3 are independently selected from the group consisting of H, electron withdrawing groups and electron releasing groups. In other embodiments, the compounds are used as oxygen scavengers and in barrier compositions and articles.
Abstract:
The present invention describes polymer compositions that have enhanced properties as oxygen barriers, as well as manufacturing methods for such oxygen-scavenging polymers and devices composed of such oxygen-scavenging polymers. These oxygen-scavenging polymers offer several benefits over existing materials, including a reduced ability for oxygen and carbon dioxide to permeate the polymer, reduced foaming of beverages stored in containers composed of the polymers, improved moisture absorption, and increased anti-bacterial/anti-fungal properties.
Abstract:
An oxygen-absorbing resin composition including a base resin (A) which is a thermoplastic resin, an oxygen-absorbing component (B) which is a compound having an unsaturated alicyclic structure, and an oxidation promotion component (C) for promoting the oxidation of the oxygen-absorbing component (B); wherein the oxygen-absorbing component (B) is an imide compound having a molecular weight of not more than 2,000 and obtained by heat-treating an amide having been obtained by reacting an acid anhydride represented by the following formula (1): wherein the ring X is an alicyclic ring having an unsaturated bond, and Y is an alkyl group, with an aromatic amine, and wherein the oxidation promotion component (C) is a compound having a benzyl hydrogen.
Abstract:
The present invention provides conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates. The conjugates as well as the polymeric reagents used to form the conjugates include at least one of each the following: an aromatic moiety comprising an ionizable hydrogen atom, a spacer moiety, and a water-soluble polymer. Methods of making polymeric reagents and conjugates, as well as methods for administering conjugates and compositions, are also provided.
Abstract:
This specification discloses a composition of a melt blend comprising a continuos polyester phase, a cobalt of manganese compound and a first scavenging compound wherein the first scavenging compound comprises at least one allylic group and at least one polar moiety and at least some of the first scavenging compound or the oligomer or the polymer comprising the first scavenging compound is not present in the continuous polyester phase. The partial insolubility is essential for oxygen scavenging and the solubility is essential for reducing haze. The composition is useful in preforms, container walls, and films for packaging.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
The present invention provides an oxygen scavenging composition for incorporation into a wall of a package. The composition comprises a polyester base polymer, at least one oligomeric, oxidizable poly(alkylene ether) glycol-α,ω-diester having the formula and at least one transition metal in a positive oxidation state. The compositions of the present invention do not exhibit an induction period prior to the onset of oxygen scavenging upon formation into a container.
Abstract:
The present invention relates to methods for making cross-linked, oxidatively stable, and highly crystalline polymeric materials. The invention also provides methods of treating irradiation-cross-linked antioxidant-containing polymers and materials used therewith.
Abstract:
An oxygen-scavenging composition comprising (I) an oxidizable metal component, (II) an electrolyte component, (III) a non-electrolytic, acidifying component, and (IV) a non ionic surfactant component, preferably selected from the group consisting of alkyl polyethylene glycol ethers, polyethylene glycols, polypropylene glycols, polypropylene glycol polyethylene glycol block copolymers and polyethylene polyethylene glycol block copolymers.
Abstract:
The present invention provides a composition comprising: a polyester base polymer; an oxidizable polyether-based additive; and a transition metal catalyst, wherein the polyester base polymer is substantially free of antimony. Containers made include a wall made of the composition. The polyester base polymer may preferably include polyethylene terephthalate and include less than about 100 ppm of antimony, less than about 50 ppm, less than about 10 ppm, or between about 0 and about 2 ppm. Containers made from the composition are substantially clear and exhibit excellent oxygen scavenging properties with little to no induction period.