Abstract:
A process is disclosed for manufacturing a lubricant a composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
In accordance with the method according to the invention, for the production of the plastics overlay, first of all a paste is made of a plastics dispersion and fillers. This paste is free of organic solvents and is applied to a sintered porous metal layer. The multilayer material thus produced is then sintered. Since the use of organic solvents is dispensed with, health risks and the risk of fire are reduced. Moreover, the composite materials produced according to the invention exhibit excellent cavitation resistance. In addition to conventional lubricant-free applications, such as bearings, these composite materials may consequently be used in particular in gear pumps and shock absorbers.
Abstract:
This invention provides a coating for zinc coated steel surfaces and other zinc containing alloys, including zinc/iron, zinc/nickel, zinc/cobalt, zinc/aluminum, and any other suitable metal surface. The coating product of this inventions contains the following ingredients: copolymers made from acrylic, vinylacrylic, and acrylstyrene monomers, has carboxylic radicals from acrylic and/or methacrylic acids, and has an Ia of 30 to 60 mg. of KOH. The water soluble copolymers and lubricatory additives, which include natural or synthetic waxes, graphite, and molybdenum sulfide, are in solid form dispersed in aqueous solution at a ratio of from 1 to 10%.
Abstract:
Disclosed herein are a solid lubricating composition comprising a solid lubricant, a lubricating oil which is in a liquid or paste form at an ordinary temperature, a carrier for absorbing and possessing said lubricating oil, and a thermosetting synthetic resin binder, and a sliding member comprising a metal substrate and a solid lubricant composed of the lubricating composition.
Abstract:
A coating and bonding composition is disclosed. The composition includes suspending, bonding and thinning agents, and a metallic flake. The composition may be used with an environmentally friendly lubricating composition to form an environmentally friendly lubricating system for protecting threaded connections from galling or other damage. That system may be used in a method for protecting threaded connections that includes the steps of: coating me threads, prior to make-up, with the coating and bonding composition and then coating them with the environmentally friendly lubricating composition, after the coated threads have dried.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.