Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
An apparatus for measuring a spectral characteristic of a fluorescent sample, being provided with: a first illuminator for emitting a beam in a wavelength range including the ultraviolet spectrum; a second illuminator for emitting a beam in a wavelength range longer than a first cutoff wavelength; a spectral radiance factor measuring device for measuring first and second total spectral radiance factors of a fluorescent sample by illuminating the fluorescent sample by the first illumination device and second illumination device, respectively; a memory for storing weight coefficients for weighting first and second total spectral radiance factors; and a calculator for calculating a total spectral radiance factor of the fluorescent sample in accordance with the following equation using measured first and second total spectral radiance factors and a weight coefficient:B.sub.t (.lambda.)=A(.lambda.).multidot.Bt.sub.1 (.lambda.)+{1-A(.lambda.)}.multidot.Bt.sub.2 (.lambda.)wherein:Bt(.lambda.): Total spectral radiance factor of the fluorescent sampleA(.lambda.): Weight coefficientBt.sub.1 (.lambda.): First total spectral radiance factorBt.sub.2 (.lambda.): Second total spectral radiance factor.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.
Abstract:
A conical illuminator for use in colorimetry, spectrophotometry, densitometry or sensitometry. In a preferred embodiment, light from a source such as a pulsed xenon lamp is integrated within a integrating chamber. The light source may be placed in a second integrating chamber adjacent to the aforementioned integrating chamber. Alternatively, the lamp may be placed directly within the integrating chamber. The light is emitted through an exit port and conformed to a conical configuration, according to a pre-selected standard, via an annular stop. An imaging optic relays the conformed light uniformly onto a sample plane. The annular stop is placed at or near the tangential focal length of the imaging optic. The annular stop may be coated with a light absorbing coating, or can be formed with a grooved or mirrored surface. Alternatively, in lieu of an integrating chamber, a diffuser may be employed for homogenizing the light. Various configurations of the imaging optic and annular stop are possible.
Abstract:
FLUORINATED ALIPHATIC LONG CHAIN ADDITION POLYMERS COMPRISED OF AT LEAST ONE MONOMER HAVING AT LEAST ONE FLUORINE ATOM ATTACHED TO A CHAIN CARBON ATOM ARE USED IN VARIOUS ENVIRONMENTS FOR THEIR ABILITY TO REFLECT A HIGH PERCENTAGE OF INCIDENT LIGHT HAVING A WAVE LENGTH IN THE 2400 TO 8000 ANGSTROM REGION . THESE REFLECTANCE POLYMERS MAY BE IN PRESSED POWDER FORM OR IN FILM FORM AND THUS ARE ESPECIALLY APPLICABLE AS REFLECTANE STANDARDS AND REFLECTANE COATINGS PARTICULARLY IN LIGHT INTEGRATING SPHERES OF SPECTROPHOTOMERTERS.
Abstract:
An imaging system (200) for generating a measure of authenticity of an object (10) comprises a dispersive imaging arrangement (30) and an image sensor arrangement (60). They are positioned so that, when electromagnetic radiation (20) from the object (10) illuminates the dispersive imaging arrangement (30), the electromagnetic radiation is dispersed and imaged by the image sensor arrangement (60). The imaging system (200) is configured to then generate a measure of authenticity of the object (10) depending at least on a relation between the imaged dispersed electromagnetic radiation and reference spectral information. The invention also relates to imaging methods, computer programs, computer program products, and storage mediums.
Abstract:
Systems and methods are provided for measuring spectral hemispherical reflectance. One embodiment is a system that includes a laser that emits a beam of light, and an optical chopper disposed between the laser and a sample. The chopper blocks the beam while the chopper is at a first angle of rotation, redirects the beam along a reference path while the chopper is at a second angle of rotation, and permits the beam to follow a sample path through the chopper and strike the sample while the chopper is at a third angle of rotation. The system also includes a hollow sphere that defines a slot through which the sample path and reference path enter the sphere. The hollow sphere includes a spectral hemispherical reflectance detector, a mount that receives the sample at the sphere, and an actuator that rotates the sphere about an axis that intersects the sample.
Abstract:
The invention features devices and methods for collecting and measuring light from external light sources. In general, the devices of the invention feature a light diffusing element, e.g., as a component of a light collector, connected by a light conducting conduit, e.g., a fiber optic cable, to a light measuring device, e.g., a spectrometer. This light diffusing element allows, e.g., for substantially uniform light diffusion across its surface and thus accurate measurements, while permitting the total footprint of the device to remain relatively small and portable. This light diffusing element also allows flexibility in scaling of the device to permit use in a wide range of applications.
Abstract:
A reflectance spectroscopy measuring and sampling system for gemstone testing is disclosed. The system includes a first light source (1), a second light source (2), a light filtering element, an integrating sphere (S), an optical fiber (9), a spectroscopic detection module (10), an analog-digital conversion module (11) and a data processing terminal (12), wherein the integrating sphere (S) is provided with an entrance port, a sampling opening (6) and a reflected light exit port (7). A reflectance spectroscopy measuring and sampling method for gemstone testing is also disclosed. The system and the method have an excellent performance and can be widely used in the gemstone identification.
Abstract:
A spectral measurement apparatus includes a light source for generating a excitation light; an integrator having an input opening portion and an output opening portion; a housing portion arranged in the integrator and for housing a sample; an incidence optical system for making the excitation light incident to the sample; a photodetector for detecting a light to be measured output from the output opening portion; and an analysis means for calculating a light absorptance of the sample, based on a detection value detected by the photodetector, and an irradiation area with the excitation light at a position of incidence to the sample is set larger than an irradiated area of the sample, and the analysis means performs an area ratio correction regarding the irradiation area with the excitation light and the irradiated area of the sample, with respect to the light absorptance calculated.