Abstract:
Provided is a spectrum detector capable of being miniaturized and which does not require complicated optical axis alignment. The spectrum detector of the present invention comprises: a substrate; a photodetector formed on the substrate and including a semiconductor having a plurality of convex portions; and a wavelength detection circuit for detecting a wavelength of light transmitted through the plurality of convex portions, from light incident on the photodetector. According to the present invention, a small-sized spectrum detector can be provided which can easily detect a peak wavelength distribution included in light of an unknown wavelength, without the use of optical equipment such as a grating or prism, thus dispensing with the need for the optical axis alignment of a complex optical system.
Abstract:
A photodetector and a spectrum detector, which can be miniaturized and do not require a complicated alignment of an optical axis, are disclosed. A photodetector comprises a substrate and a semiconductor that is formed on the substrate and has a plurality of convex portions. The photodetector detects light transmitted through the plurality of convex portions among light incident on the plurality of convex portions. Accordingly, it is possible to detect light with a specific peak wavelength without using an optical component such as a diffraction grating or prism, so that a small-sized photodetector that does not require a complicated alignment of the optical axis in an optical system may be implemented.
Abstract:
A spectrophotometer comprising a monolithic semiconductor substrate, one or more wavelength dispersing means, and one or more wavelength detecting means, wherein the monolithic substrate (1) has waveguide means (2) and one or more resonators (3-14) acting as detectors of particular light wavelengths and disposed in proximity to the waveguide means in such a way that evanescent light coupling can occur for said light wavelengths.
Abstract:
The spectrometer 1 is provided with a package 2 in which a light guiding portion 7 is provided, a spectroscopic module 3 accommodated inside the package 2, and a support member 29 arranged on an inner wall plane of the package 2 to support the spectroscopic module 3. The spectroscopic module 3 is provided with a body portion 11 for transmitting light made incident from the light guiding portion 7 and a spectroscopic portion 13 for dispersing light passed through the body portion 11 on a predetermined plane of the body portion 11, and the spectroscopic portion 13 is supported by the support member 29 on the predetermined plane in a state of being spaced away from the inner wall plane.
Abstract:
Mid-IR spectrometer with no moving parts, which is small and compact, low power consuming, and can monitor blood sugar (glucose) and other blood and bodily fluid analytes on a continuing basis. It has many applications in the health, forensic, environmental and other areas.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first pool portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is pooled to remain at the first pool portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.
Abstract:
A high speed miniature tera- and gigahertz electromagnetic radiation on-chip spectrometer that comprises a tunable solid state 2D charge carrier layer or a quasi 2D charge carrier layer with incorporated single or multiple defects, at least first and second contacts to the charge carrier layer. Also the device includes an apparatus for measuring the device response between the first and second contacts, and an apparatus for a controllable tuning of at least one of the charge carrier layer parameters. The operation principle is based on the fact that radiation of different wavelengths excites distinct sets of plasma modes in the charge carrier layer.
Abstract:
The present invention provides a highly reliable spectral module. The spectral module (1) of the present invention comprises a substrate (2) for transmitting therethrough light incident on one surface (2a); a lens unit (3), having an entrance surface (3a) opposing the other surface (2b) of the substrate (2), for transmitting therethrough the light entering from the entrance surface (3a) after passing through the substrate (2); a spectroscopic unit (4), formed with the lens unit (3), for spectrally resolving and reflecting the light having entered the lens unit (3); a photodetector (4) for detecting the light reflected by the spectroscopic unit (4); and a support unit (8), disposed between the other surface (2b) and the entrance surface (3a), for supporting the lens unit (3) against the substrate (2). Since the support unit (8) forms a gap between the other surface (2b) and the entrance surface (3a) in the spectral module (1), the other surface (2b) and the entrance surface (3a) are prevented from coming into contact with each other and causing damages, whereby the spectral module (1) can improve its reliability.
Abstract:
The present invention relates to a bispectral detection device, particularly of an infrared radiation and a visible radiation, including a monolithic substrate; an array of bolometric micro-bridges sensitive to infrared radiation, the bolometric micro-bridges being suspended over a first face of the substrate by means of support and connection arms; and an array of photoelectric elements fowled in the substrate, and sensitive to visible radiation, the bolometric micro-bridges and the photoelectric elements being stacked. According to the invention, the substrate portion between the photoelectric element array and a second face of the substrate, opposite to the first face thereof, is thinned so that the photoelectric elements are capable of detecting a visible radiation incident on the second face.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.