Abstract:
System and methods for performing surgery at a target site defined by a virtual object. A surgical navigation system includes a patient tracker (54,56) to be attached to a patient. A localizer (44) cooperates with the patient tracker and generates localizer data associated with the target site during the surgery. The surgical navigation system also includes a vision device (72) to generate image data associated with the target site and surfaces surrounding the target site. A navigation computer in communication with the localizer and the vision device is configured to determine a region to be avoided outside of the target site based on the localizer data and the image data. In some cases, a second virtual object is generated to define the region to be avoided so that a surgical instrument used during the surgery avoids the region.
Abstract:
A waste collection unit is provided that comprises a vacuum pump and smoke evacuation system including a blower and blower motor. The vacuum pump, the blower, and the blower motor, create noise. This noise is attenuated in first and second sound attenuating enclosures for the vacuum pump and the blower and blower motor. A cleaning system is also provided with rotating liquid delivery devices. An actuator is operatively coupled to the liquid delivery devices to rotate the liquid delivery devices.
Abstract:
A sterilizable enclosure for securing a portable electronic device having a touchscreen and for preventing ingress and egress of contaminants to and from the secured device, comprising a frame with a frame periphery edge, the frame defining a window with a transparent panel adjacent the window arranged to abut the touchscreen. A base coupled to the frame comprises a base periphery edge and cooperates with the frame to define a closed position in which the device is secured between the base and the frame. A seal comprising a seal periphery edge is attached to at least one of the base and the frame and is arranged to be engaged between the base and the frame when the enclosure is closed to prevent ingress and egress of contaminants to and from the secured device with the seal periphery edge adjacent to the frame periphery edge and base periphery edge.
Abstract:
A drill for driving a drill bit into a solid object such as bone. The drill includes a rotor with a bore that transmits rotational movement to the drill bit. The drill bit extends through the rotor bore. A probe extends forward from the drill to measure bore depth. The probe is moveably mounted to the drill so as to extend into the rotor bore. As the drill and drill bit advance forward the probe remains static. As a result of the advancement of the drill the rotor extends over the proximal end of the probe.
Abstract:
A person support apparatus, such as a bed, stretcher, recliner, cot, or the like, includes a frame, a plurality of load cells, a support surface supported by the load cells, a detection circuit, and a controller. The controller determines if any of the load cells are in an error state based upon information from the detection circuit. If the load cells include memory having calibration data stored therein, the controller communicates with the memory and uses the calibration data to determine an amount of weight supported on the surface. The detection circuit may include one or more Wheatstone bridges wherein the controller monitors voltages between midpoints of the Wheatstone bridges. The load cells may include an activation lead that is monitored by the detection circuit and a sensor lead that is used by the controller to determine an amount of weight supported on the patient support apparatus.
Abstract:
A patient support apparatus, such as a bed, cot, recliner, operating table, stretcher, or the like, includes a control panel with multiple controls for controlling functions of the patient support apparatus. A control system disables at least a first control and changes an illumination state of a backlight when the patient support apparatus is in a particular state. In some embodiments, the particular state is the arming of an exit detection system and/or the deactivation of a brake on the patient support apparatus. The particular state may also or alternatively be tied to a particular mode of the patient support apparatus, such as a diagnostic mode, a maintenance mode, and/or a normal mode. The control system may also never illuminate a first icon on the patient support apparatus if it was initially configured in a particular manner, such as being intended for sale in a particular geographic market.
Abstract:
A force/torque transducer comprises a first member, a second member for receiving a load, and load cells connecting the first and second members. The load cells include sensors for measuring physical deformation of the load cells. Sensor measurements are convertible into force/torque measurements using a transformation matrix configured with M rows and N columns. M and N are respectively defined by a number of degrees of freedom monitored by the transducer and a number of load cells employed by the transducer, or vice-versa. Each row or column that corresponds to each load cell has values relating to that one load cell. Each row or column that corresponds to each degree of freedom has values relating to that one degree of freedom. A sum of the values in each row or column corresponding to each degree of freedom is substantially equal to zero.
Abstract:
An isolated force/torque sensor assembly (10, 110, 210) for a force controlled robot (12) includes an end effector (22, 122, 222) for operatively attaching to an arm (14) of the force controlled robot (12), the end effector (22, 122, 222) having a gripping portion (36, 136, 236) adapted to be gripped by a hand of a user, and a force/torque sensor (42, 142, 242) adapted to be disposed between the gripping portion (36, 136, 236) and the arm (14) of the robot (12), the force/torque sensor (42, 142, 242) having a high force end effector interface (44, 144, 244) adapted to be attached to the arm (14) of the robot (12), a low force end effector interface (48, 148, 248) operatively attached to the gripping portion (36, 136, 236), and a transducer (45, 145, 245) disposed between the high force end effector interface (44, 144, 244) and the low force end effector interface (48, 148, 248) for reacting to loads applied to the low force end effector interface (48, 148, 248) for user controlled positioning of a surgical tool and for generating corresponding output signals, and wherein the transducer (45, 145, 245) is bypassed for high loads.
Abstract:
A vaso-occlusive device is constructed out of dissimilar metallic materials that are in contact or otherwise in close proximity with one another, thereby causing the device to undergo galvanic corrosion when exposed to an electrolytic medium, such as blood or other body fluid, wherein one of the dissimilar metallic materials is zirconium or zirconium alloy to create a corrosive product including zirconia having a relatively high hardness, a relatively high fracture toughness, and a relatively high stability when the device is implanted in a vasculature site, such as an aneurysm.
Abstract:
An ultrasonic surgical tool system (3) with a tip capable of simultaneously vibrating in plural modes. The system includes a console (24) capable of supplying a drive signal to the tip that includes plural components. Each component has a frequency characteristic that is based in part on the equivalent of current through the mechanical components of the tip. The frequency components are different from each other. Based on the application of drive signal the tip undergoes non-linear vibrations.