Abstract:
Compositions and methods for treating metal substrates and/or bonding metal substrates to polymeric materials, such as rubber, are provided. The compositions include at least one substantially hydrolyzed amino silane and at least one substantially hydrolyzed sulfur-containing silane. Optionally, the compositions include a nano-size particulate material. The compositions provide coatings on metal substrates for protecting the metal from corrosion and for adhering rubber-like polymeric compositions to the metal with polymer-to-metal vulcanization conditions less dependent on the coating thickness, and with use of less coating materials.
Abstract:
A method of fabricating a composite rope structure comprising the following steps. Impregnated yarns comprising fibers within a resin matrix are fabricated at a first location. The impregnated yarns are transported from the first location to a second location. The impregnated yarns are dispensed at the second location. The resin matrix of the dispensed impregnated yarns is cured at the second location to obtain the composite rope structure.
Abstract:
A metallic body of carbon steel covered with an adhesive layer capable of adhering to a rubber matrix based on diene elastomer. The carbon content of the steel is between 0.35 and 1.2% by weight. The adhesive layer is formed of a metallic layer bearing aluminum oxides or hydroxides, which itself is covered with an organosilane film which is at least bifunctional, capable of ensuring, as coupling agent, the bond between the aluminum oxides or hydroxides on one hand, and the rubber matrix on the other hand.
Abstract:
A steel cord adapted for the reinforcement of elastomers includes: a core steel filament with a diameter dc and coated with a polymer, six intermediate steel filaments with a diameter di smaller than or equal to dc, the intermediate steel filaments being twisted around the core steel filament, ten to eleven outer steel filaments with a diameter do, smaller than or equal to di wherein these outer steel filaments are twisted around the intermediate steel filaments, and the outer steel filaments are preformed in order to allow rubber penetration inside the cord. The core steel filament, the intermediate steel filaments, and the outer steel filaments all have a tensile strength of at least 2600 MPa. The cord has an outer diameter D according to the following formula: D≦dc+2×di+2×do+0.1 mm, wherein all diameters are expressed in millimeters (mm).
Abstract translation:适用于增强弹性体的钢丝绳包括:具有直径d c c的芯钢丝,并涂覆有聚合物,六个中等长度的细长丝,直径小于或等于 中间钢丝缠绕在芯钢丝上,十到十一个直径小于或等于的钢丝, 其中这些外部钢丝围绕中间钢丝绞合,并且外部钢丝被预成型以允许橡胶在帘线内渗透。 芯钢丝,中间钢丝和外钢丝均具有至少2600MPa的拉伸强度。 帘线具有根据以下公式的外径D:D <= D i> + 2×2×2×2×↓+ 0.1mm,其中 所有直径以毫米(mm)表示。
Abstract:
A fire resistant rope and method of making the same. The fire resistant rope comprises a core formed of high tensile strength fibers and a jacket formed of high temperature resistant fibers, where the jacket covers the core. The core comprises a plurality of strands, where each strand comprises a plurality of yarns and each yarn comprises a plurality of high tensile strength fibers. The jacket comprises a plurality of strands, where each strand comprises a plurality of yarns and each yarn comprises a plurality of high temperature resistant fibers. Optionally, a fire retardant material may be applied to the rope.
Abstract:
A steel cord (10) comprises a core with one or more core steel filaments (12) and further comprises a first layer of intermediate steel filaments (14) twisted around the core, and a second layer of second steel filaments (18) twisted around the first layer. At least one of the intermediate steel filaments is individually coated by means of a polymer (16) with a minimum thickness of 0.010 mm. The polymer (16) reduces the fretting between the coated intermediate steel filaments (14) and the other steel filaments and makes the steel cord suitable for reinforcement of carcass plies of a tire.
Abstract:
A steel cord-rubber composite is provided, that has improved initial adhesion property and adhesion property against aging between the steel cord and the rubber composition with improved manufacturing cost efficiency. A steel cord-rubber composition composite includes a coating layer and a steel cord, and the coating layer includes an inner coating layer formed of a rubber composition containing a rubber component, a cobalt compound and sulfur and directly covering the steel cord, and an outer coating layer formed of a rubber composition of which contents of cobalt compound and sulfur are smaller than those of the inner coating layer and coating the outer portion of the inner coating layer.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel filaments 115 which are then stranded in case of a single layer steel cord, the uncured rubber is coated on all of plural core filaments 329 which are then stranded along with outer layer filaments 330 in the same direction at the same pitch in case of a 2-layer steel cord of 1 stranding process, and the uncured rubber is coated on all or 2 to 4 core filaments 218 or on at least one of 3 or 4 steel filaments 408, 408null to form a core strand and outer layer filaments 410, 410null are stranded therearound in case of 2-layer steel cord of 2 stranding process. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
In a composite of vulcanizable rubber or rubber-like composition with one or more metal reinforcement elements embedded therein, the metal reinforcement element is coated with a polymer or non-cured rubber composition compatible with and co-polymerizable, co-vulcanizable or crosslinkable with said vulcanizable ruber composition to be reinforced, and additionally bearing functional groups either covalently bonding to the metal surface of said reinforcement element or forming covalent bonds with the outward directed first functional groups of a mono- or multimolecular layer of a bifunctional adhesion promoter intercalated between said metal and said coating and bound to said metal by its second functional groups. A cured rubber or rubber-like product, for instance a pneumatic tire, is obtained by vulcanization of such a composite.
Abstract:
A sheathed synthetic fiber rope includes concentric layers of load-bearing synthetic fiber strands, preferably of aramide fibers, with an outermost layer of strands having anchoring strands permanently fastened to a sheath extruded onto the outermost layer. The anchoring strands can be formed of weldable or vulcanizable material. Alternatively, a polyurethane jacket surrounding each of the outermost layer strands can be used to permanently fasten the sheath.