Abstract:
In order to prevent a vehicle fitted with braking assistance and trajectory correction devices and having a highly placed center of gravity from overturning in a bend when there is a sudden turn of the steering wheel at the same time as a sudden braking action, a hydraulic braking circuit comprising a hydraulic pump (3) which sucks a fluid contained in a reservoir (3) through a master cylinder (1), is provided with a bladder (10). The bladder, placed between the master cylinder and the hydraulic pump, reduces the duration of flow of the hydraulic fluid to the pump, ensuring a sufficient suction pressure at the entrance of the pump in order to cram the brake and cause the wheel having the most pressure to skid.
Abstract:
A method for providing a controlled force to a dynamic system includes applying a force to a first actuator, transmitting the force from the first actuator to a second actuator through a closed fluid path containing a captured volume of fluid, and providing, via the second actuator, a controlled force to the dynamic system.
Abstract:
The invention relates to a hydraulic accumulator, particularly in the form of a suction stream stabilizer, having an accumulator housing (10) which is provided with two fluid connections (16) between which a deflection device (22) is arranged which has an adjoining housing part (26) which accommodates a separating element which separates the interior (18) of the accumulator housing (10) from an accumulator volume (30). Solutions for long-term and functionally reliable operation can be achieved on account of the separating element being formed from a piston (28) or a bellows (50).
Abstract:
An impedance shaping element (or more simply, an impedance shaper) physically alters or shapes the mechanical impedance of a drive system as it appears from an interface and facilitates use of feedback control to improve performance by altering or shaping a dynamic coupling between an interface and a control system. For example, the impedance shaper can be used to adjust a coupling value from a first value to a second different value. In one embodiment, an impedance shaper controls the compliance, damping and inertia characteristics of fluid within a fluid path.
Abstract:
The invention relates to a hydraulic accumulator, preferably a membrane accumulator, in particular for damping pulsations in fluid circuits, comprising an accumulator housing (12), with at least one inlet (14) and an outlet (16) for the fluid for damping, whereby a separating element (18), preferably in the form of a membrane, separates a gas reservoir (20) from a fluid chamber (22) within the accumulator housing (12). According to the invention, a hydraulic accumulator with high working capacity of high reliability which little space requirement despite high accumulation capacity for the working gas in the gas reservoir (20) can be achieved, whereby an embodiment has a support device (24) within the accumulator housing (12), running within the gas reservoir (20) or defining the same, forming a possible support for the separating element (18) and the gas reservoir (20) of the accumulator housing (12) is sufficiently large in dimension that the total necessary gas volume is retained within the accumulator housing (12) itself and/or alternatively the membrane is formed from an elastic material, in particular a rubber material and comprises polytetrafluoroethylene or compounds thereof as a gas barrier layer.
Abstract:
A braking system includes an accumulator positioned along the brake line between the wheel brake and a pump. The accumulator includes a cylinder defining a bore and a piston fitted within the bore. The cylinder defines an inlet and an outlet fluidically connecting the bore to the brake line. The outlet is axially spaced from the inlet and is positioned to be sealed closed by the piston when it is proximate to inlet. The accumulator stores a reserved volume of fluid that is not delivered to the pump via the outlet to thereby reduce the volume of fluid delivered to the master cylinder by the pump and prevent damage to the lip seals during ABS control.
Abstract:
A hydraulic control unit (HCU) for a vehicle brake system having an HCU body and an accumulator mounted in the HCU body. A grommet is provided for mounting the HCU body to a vehicle body and resiliently separating the HCU body from the vehicle body. The grommet defines a vent path for the accumulator and includes a hollow generally cylindrical shaft. The shaft has a closed end and an open end, and the closed end has an opening therethrough. An enlarged annular head is formed on the open end of the shaft and has an inner surface defining an axial bore therethrough. The axial bore is in fluid communication with the hollow shaft, the annular head further has a crown cut geometry providing radially extending grooves within an axial face of the annular head, the radially extending grooves being in fluid communication with the axial bore of the annular head.
Abstract:
A compact hydraulic unit for slip-controlled brake systems with several hydraulically, mechanically and/or electrically operable functional elements (e.g. accumulator, valve elements, pressure generating and driving elements) arranged in an accommodating member, with several pressure fluid channels connecting the functional elements. The pressure fluid channels create a hydraulically operable connection between at least one pressure fluid supply means and one pressure fluid consumer. A control device can be connected with the valve and the driving elements by means of electrical conductors. The valve elements are arranged in several valve accommodating bores of the valve accommodating member in a first and a second row. Pressure fluid bores are provided between the two diametrically extending valve rows which connect the valve elements and location bores containing the pressure generating element and the driving element. Outside the two valve rows, there are further location bores in the valve accommodating member in which pressure accumulator pistons are positioned.
Abstract:
A compact hydraulic unit for slip-controlled brake systems with several hydraulically, mechanically and/or electrically operable functional elements (e.g. accumulator, valve elements, pressure generating and driving elements) arranged in an accommodating member, with several pressure fluid channels connecting the functional elements. The pressure fluid channels create a hydraulically operable connection between at least one pressure fluid supply and one pressure fluid consumer. A control device can be connected with the valve and the driving elements by means of electrical conductors. The valve elements are arranged in several valve accommodating bores of the valve accommodating member in a first and a second row. Pressure fluid bores are provided between the two diametrically extending valve rows which connect the valve elements and location bores containing the pressure generating element and the driving element. Outside the two valve rows, there are further location bores in the valve accommodating member in which pressure accumulator pistons are positioned.
Abstract:
An economical to manufacture and simple to install and remove gas charged fluid pressure accumulator including a cup-shaped accumulator body with an integral dome at one end and an integral in-turned annular lip at the other end, a piston slidably disposed in the accumulator body, and an external screw thread on the accumulator body. The accumulator body is screwed into a threaded counterbore until the annular lip bears against a bottom wall of the counterbore with a fluid port of the manifold inside of the projection of the lip on the bottom wall. A seal ring in a groove in the bottom wall of the counterbore bears against the annular lip to seal the chamber of the accumulator defined between the bottom wall and the piston.