Abstract:
An optical characteristic measuring apparatus includes a hemispheric portion having a reflective surface on its inner wall, and a plane portion arranged to close an opening of the hemispheric portion and having a reflective surface on an inner-wall side of the hemispheric portion. The plane portion includes a first window occupying a range including a substantial center of curvature of the hemispheric portion for attaching a light source to the first window. At least one of the hemispheric portion and the plane portion includes a plurality of second windows arranged in accordance with a predetermined rule for extracting light from inside the hemispheric portion.
Abstract:
An optical characteristic measuring apparatus includes a hemispheric portion having a reflective surface on its inner wall, and a plane portion arranged to close an opening of the hemispheric portion and having a reflective surface on an inner-wall side of the hemispheric portion. The plane portion includes a first window occupying a range including a substantial center of curvature of the hemispheric portion for attaching a light source to the first window. At least one of the hemispheric portion and the plane portion includes a plurality of second windows arranged in accordance with a predetermined rule for extracting light from inside the hemispheric portion.
Abstract:
A system to provide radiant energy of selectable spectral characteristic (e.g. a selectable color combination) uses an integrating cavity to combine energy of different wavelengths from different sources. The cavity has a diffusely reflective interior surface and an aperture for allowing emission of combined radiant energy. Sources of radiant energy of different wavelengths, typically different-color LEDs, supply radiant energy into the interior of the integrating cavity. In the examples, the points of entry of the energy into the cavity typically are located so that they are not directly visible through the aperture. The cavity effectively integrates the energy of different wavelengths, so that the combined radiant energy emitted through the aperture includes the radiant energy of the various wavelengths. The apparatus also includes a control circuit coupled to the sources for establishing output intensity of radiant energy of each of the sources. Control of the intensity of emission of the sources sets the amount of each wavelength of energy in the combined output and thus determines a spectral characteristic of the radiant energy output through the aperture.
Abstract:
An optical characteristic measuring apparatus includes a hemispheric portion having a reflective surface on its inner wall, and a plane portion arranged to close an opening of the hemispheric portion and having a reflective surface on an inner-wall side of the hemispheric portion. The plane portion includes a first window occupying a range including a substantial center of curvature of the hemispheric portion for attaching a light source to the first window. At least one of the hemispheric portion and the plane portion includes a plurality of second windows arranged in accordance with a predetermined rule for extracting light from inside the hemispheric portion.
Abstract:
An integrating sphere photometer and a measuring method of the same are provided to precisely measure a directional light source. The integrating sphere photometer includes an integrating sphere having a plurality of through-holes, a plurality of photometers disposed at the through-holes, baffles disposed in front of the photometers to be spaced apart therefrom, an auxiliary light source disposed inside the integrating sphere, an auxiliary baffle disposed in front of the auxiliary light source, and a summing unit of output signals of the photometers under the illumination of a light source to be measured disposed in the central area inside the integrating sphere.
Abstract:
The present invention relates to a rotationally asymmetric chaotic optical multi-pass cavity useful in optical gas sensing spectroscopy, optical delay lines, and laser amplification systems, for example. The cavity may include a single closed mirror having a light reflective surface that is deformed in two orthogonal directions and more particularly, but not exclusively, in the shape of a quadrupole in both horizontal and vertical planes. The cavity includes a light entry port and a light exit port which may be the same or separate ports, as well as a gas inlet and a gas outlet. The optical path length, the beam divergence rate, and the spot pattern are controlled by selecting the cavity deformation coefficients and the input beam direction to achieve the desired beam path and beam quality.
Abstract:
A method for calibrating a spectrometer, while orbiting a celestial body, includes the steps of: (a) obtaining an estimate of radiance emanating from the celestial body; (b) raster scanning the celestial body using the spectrometer; (c) measuring filtered radiance of the celestial body based on step (b); and (d) determining gain of the spectrometer using steps (a) and (c). A calibrated spectrometer of the present invention is based on the determined gain of step (d). The method includes the step of: (e) raster scanning another celestial body to determine the albedo radiance of the other celestial body, after determining gain of the spectrometer in step (d). The celestial body may be the moon and the other celestial body may be the Earth.
Abstract:
Provided are a light source evaluation device, a light source adjustment system, a light source evaluation system, and a light source evaluation method whereby it is possible to evaluate the characteristics of a solar simulator, which is a light source for measuring the characteristics of a solar cell, without creating a reference cell or pseudo cell tailored to the spectral sensitivity of a solar cell to be measured. Said evaluation is performed by calculating an evaluation value of the characteristics of the light emitted by a solar simulator in comparison to natural sunlight on the basis of the spectral irradiance of the light emitted by a solar simulator as measured by a spectroradiometer, the spectral irradiance of natural sunlight, and the pre-measured spectral sensitivity of the solar cell to be measured.
Abstract:
A sample that is an object whose quantum efficiency is to be measured, and a standard object having a known reflectance characteristic are each attached to a sample window provided in a plane mirror. Based on respective spectrums measured by a spectrometer in respective cases where the sample is attached and the standard object is attached, the quantum efficiency of the sample is measured. The plane of an opening of an observation window is made substantially coincident with the exposed surface of the sample or standard object, so that direct incidence, on the observation window, of the fluorescence generated from the sample receiving an excitation light and the excitation light reflected from sample is prevented.
Abstract:
An optical measurement apparatus includes a spectroscopic measurement device, a first optical fiber for propagating light to be measured, a hemispherical portion having a light diffuse reflection layer on an inner wall of the hemispherical portion, and a plane portion disposed to close an opening of the hemispherical portion and having a mirror reflection layer located to face the inner wall of the hemispherical portion. The plane portion includes a first window for directing the light emitted thorough the first optical fiber into an integrating space. The integrating space is formed by the hemispherical portion and the plane portion. The optical measurement apparatus further includes a second optical fiber for propagating the light in the integrating space to the spectroscopic measurement device through a second window of the plane portion.