Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
At the time of analytical measurement of a sample by the fluorescence measuring device or the phosphorescence measuring device, both the optical path of exciting light emitted from the light source to the sample and the optical path of fluorescence or phosphorescence emitted from the sample to the detection unit are shut off. Both are shut off by one chopper.
Abstract:
The invention is a method and apparatus for determining characteristics of a sample. The system and method provide for detecting a monitor beam reflected off a mirror, where the monitor beam corresponds to the intensity of light incident upon the sample. The system and method also provide for detecting a measurement beam, where the measurement beam has been reflected off the sample being characterized. Both the monitor beam and the measurement beam are transmitted through the same transmission path, and detected by the same detector. Thus, potential sources of variations between the monitor beam and the measurement beam which are not due to the characteristics of the sample are minimized. Reflectivity information for the sample can be determined by comparing data corresponding to the measurement beam relative to data corresponding the monitor beam.
Abstract:
There is provided an optical system for measurement of optical constant capable of measuring the absolute reflectance and the absolute transmittance for determining the optical constant of a substance with excellent accuracy without replacing the optical system during the measurement by using a different system for measuring the absolute reflectance and the absolute transmittance of the sample, comprising an incoming side beam switching mirror for selectively switching the direction of the light from a light source to a first or second converged light reflecting means side, first and second converged light reflecting means for projecting the light from the beam switching mirror so as to be converged in an intersecting manner at the position of a sample holder, the sample bolder capable of selectively positioning a sample fitting hole or a through hole at the converging position by the converged light reflecting means by advancing/retracting the sample fitting hole or the through hole, first and second received light reflecting means which are disposed on the optical path of the light reflected by or transmitted through a sample set in the sample fitting hole on the sample holder or the through hole, and direct the light toward a single exiting side beam switching mirror, and the exiting side beam switching mirror capable of switching the direction of the light projected via the received light reflecting means toward a single detector, and the absolute reflectance and the absolute transmittance for the face side incidence and the back side incidence of the sample.
Abstract:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Abstract:
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Abstract:
Time-divisionally-multiplexed light receiving signals are sampled at a predetermined time interval as they are, and then converted into digital data. Then, address is determined based on an index signal as a standard of the time-divisional multiplexing, and the data are sequentially stored in a data memory. When the data are sequentially read out, change of quantity of the data is obtained to determine a period having the smallest change in quantity as an effective period. Then, the data included in the effective period are selected and separated to a sample side beam, reference side beam and cutoff period. Thus, the multiplexed light receiving signals are accurately separated by the digital data.
Abstract:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Abstract:
A double-beam spectrophotometer of the invention is provided with a sector mirror used at a luminous flux separating portion or at a luminous flux combining portion, and a DC brushless motor is used for actuating the sector mirror to rotate. Since the DC brushless motor is used, the sector mirror can be rotated at high speed with few noise. Also, the double-beam spectrophotometer can measure the change in the short period of time.
Abstract:
A dual beam spectophotometer is described in which a beamsplitter is at least partially surrounded by a chopper, the combination of which provide sample and reference beams. An oscillating grating produces a monochromatic light beam scans a selected spectral range of wavelengths. The movement of a second chopper and of the oscillating grating is controlled to alternately pass sample and reference spectrums for detection by a detector and to block all radiation. Detected signals are processed for storage by suitable electronics and a computer. The electronics also control the motion of the oscillating grating and chopper. A set of beamsplitters with distinctly different sample-to-reference beam ratios are provided to add versatility to the spectrophotometer.