Abstract:
The present disclosure provides compounds of Formulas (I') and (I), and pharmaceutically acceptable salts thereof. The compounds described herein may be useful in treating and/or preventing proliferative diseases (e.g., cancer). Also provided in the present disclosure are pharmaceutical compositions, kits, and uses thereof for treating proliferative diseases.
Abstract:
Disclosed herein is a phage-displayed single-chain variable fragment (scFv) library, that comprised a plurality of phage-displayed scFvs characterized with (1 ) a specific CS combination; (2) a specific distribution of aromatic residues in each CDR; and (3) a specific sequence in each CDR. The present scFv library could be used to efficiently produce different antibodies with binding affinity to different antigens. Accordingly, the present disclosure provides a potential means to generate different antigen-specific antibodies promptly in accordance with the need in experimental researches and/or clinical applications.
Abstract:
The present disclosure relates to compositions and methods of use comprising antibodies or binding fragments thereof further comprising universal Fc glycoforms.
Abstract:
The present disclosure is directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA3/SSEA4/GloboH associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globo-series glycosphingolipid synthesis. The present disclosure relates to methods and compositions which can modulate the globo-series glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globo-series glycosphingolipid SSEA3/SSEA4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globo-series synthetic pathway. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions.
Abstract:
A pharmacological composition for use in inhibiting differentiation, functional activities, and population of granulocytic myeloid-derived suppressor cells (gMDSCs) and/or suppressing, tumor metastasis in a subject in need thereof is disclosed. The composition comprises a therapeutically effective amount of Bidens pilosa extract, or more than one polyacetylenic compounds purified or isolated from the B. pilosa extract, and a pharmaceutically acceptable carrier.
Abstract:
The present invention includes a genetically-modified non-human animal model of longevity and increased health span, which is associated with reduced tumorigenesis and tumor metastasis, as well as related methods for increasing longevity and health span, reducing tumorigenesis and tumor metastasis, and identifying active agents that confer increased longevity or health span, or reduced tumorigenesis or tumor metastasis
Abstract:
This disclosure includes an immunogenic composition containing (a) a glycan conjugate including a carrier and one or more glycans, wherein each of the one or more glycans is conjugated with the carrier through a linker, and optionally (b) an adjuvant. The one or more glycan is each a Globo H derivative.
Abstract:
The present disclosure provides a small interfering RNA, including: (a) a first small interfering RNA consisting of a first passenger strand and a first guide strand; (b) a second small interfering RNA consisting of a second passenger strand and a second guide strand; (c) a third small interfering RNA consisting of a third passenger strand and a third guide strand; or (d) a fourth small interfering RNA consisting of a fourth passenger strand and a fourth guide strand.
Abstract:
Aptamers that bind to and inhibit CTLA-4 and uses thereof in enhancing immune activities, and treating cancer and HIV infection are provided.
Abstract:
Described is a method of diagnosing, treating, or monitoring a treatment for Kawasaki disease in a subject. The method includes detecting the level of a biomarker in a sample obtained from the subject, the biomarker being IL-7F, sCD40L, MPIF-1, E-selectin, IP-10, or IL-33. The level is compared to a cut-off level. Also described is a kit for carrying out the method.