Abstract:
The invention relates to a method of making paper or paperboard comprising the steps of; a. providing a stock suspension; b. adding a mixture of alkali-metal silicate and precipitated calcium carbonate to said stock suspension; c. adding an acidic media to said stock suspension substantially directly before and/or after step (b) d. forming a web of the stock suspension obtained in step (d) e. drying said web. The addition of a mixture of alkali-metal silicate and PCC and of an acidic media to the stock suspension in accordance with the invention improves the bonding between the fibers and the filler (PCC), whereby problems related to dusting is decreased. Moreover, the method enables the addition of a higher amount of fillers to the paper without substantially affecting the strength.
Abstract:
The invention covers a method of producing a heat-resistant polymer-coated oven board, the resulting oven board, a food tray and a food package, which comprise such board and withstand heating in a range or microwave oven. According to the invention the coated oven board (1) is made by adhering a premade heat-resisting film (4) comprising polyethylene terephthalate (PET) or its derivate, such as glycol-modified PET known as PETG, to a board base (2) by extrusion lamination, in which an adhesive layer (3) comprising polyamide (PA) is extruded between the heat-resisting film and the board base. To improve the strength and barrier properties, the film (4) may be an extruded multilayer film and/or the film may be stretch-orientated to bring about crystallization in PET.
Abstract:
The invention relates to use of polylactide (PLA) as an extruded polymer coating on paper or board intended for the production of containers and packages, which are heated in a stove or microwave oven. According to the invention a polyfunctional cross-linking agent, such as trialkyl isocyanureate (TAIC), is blended with PLA, and the extruded coating layer is subjected to cross-linking electron beam (EB) radiation. PLA may be used as such or blended with another biodegradable polyester such as polybutylene succinate (PBS). EB radiation has been found to improve adhesion of the coating to the paper or board substrate, heat-scalability of the coating, and heat-resistance of the finished containers and packages.
Abstract:
The invention relates to methods for lowering the melt viscosity and thereby improving heat-sealability of a polyester. The invention also relates to a method for manufacturing a heat-sealed container or package from fibrous- based, polyester-coated packaging material, and a method for heat-sealing polyester. The solution according to the invention is subjecting polyester to electron beam (EB) radiation. The lowered melt viscosity allows a lower heat-sealing temperature, and permits sealing of polyester to an uncoated fibrous surface. The preferred polyester for the invention is polylactide, as such or as blended with another polyester.
Abstract:
The invention relates to a method and an apparatus for deep-drawing a tray (1) from fiber-based sheet material (2), such as polymer coated board. The apparatus comprises a female moulding tool (3), which comprises a cavity (7) for forming the tray bottom outwardly, a male moulding tool (4), which comprises a plunger plate (11) for forming the tray bottom inwardly, the plunger plate being movable with respect to the cavity for forming the tray, and clamps (6, 15) with an interface for holding the sheet material and forming a tray rim flange. According to the invention by laterally distancing at least one of the moulding tools (3, 4) from the sheet material leeway is provided for free forming of the tray side walls while wrinkling or tearing of the same is avoided. Spacer plates (13) may be positioned behind the plunger plate (11), to adjust its position in relation to the cavity (7) of the female moulding tool (3). The cavity may have a separate bottom plate (8) and spacer plates (9) there below, or screw means may be provided for adjusting the distance of the bottom of the cavity from the clamp interface and thereby varying the depth of the tray.
Abstract:
An in-line production method for providing a liquid flow of at least one additive in the short circulation and into the liquid flow of a paper making stock of a fiber web machine by feeding, the liquid flow of the at least one additive to the liquid flow of the short circulation, wherein a suitable amount of a microfibrillated cellulose or nanofibrillated polysaccharide is provided substantially simultaneously with the feeding of liquid flow of the at least one additive.
Abstract:
The present invention relates to a composition for coating, in particular a composition comprising lignin and one or more epoxy-group containing compounds, and methods for the manufacturing thereof and uses thereof. The present invention also relates to products obtainable by said methods and uses thereof.
Abstract:
A method of modifying a polymer having hydroxyl groups, selected from the group of polysaccharides and lignin, to give a modified polymer comprising the step of contacting said polymer with at least one organic phosphonate salt in order to chemically modify the polymer, said organic phosphonate salt being in a liquid phase. The method of polymer modification provides novel polymers. Modified polymers obtained from a polymer having been treated with at least one organic phosphonate salt are also disclosed. The modified polymers can be used as such or separated and optionally recovered from the solution, optionally being formed into particular materials or shapes.
Abstract:
The present invention relates to a method for treating a food product in order to preserve the product wherein the food product is treated with a solution comprising a nanofibrillated polysaccharide. The invention further relates to a food product being treated with a solution comprising a nanofibrillated polysaccharide.
Abstract:
The invention relates to methods of producing microfibrillated cellulose (MFC). According to the invention a fibrous pulp suspension is fibrillated mechanically at a consistency of less than 12.5%, dewatered to raise the consistency of the fibrillated suspension to at least 12.5%, and then subjected in the dewatered condition to further fibrillation. Alternatively an initially fibrillated fibrous pulp suspension may be dewatered and fibrillated in the dewatered condition, after which these dewatering and fibrillating steps are repeated one or more times so that pulp consistency is increased for each fibrillation step. The goals of raising the consistency between subsequent fibrillations are energy saving and an increased aspect ratio in MFC. The invention even comprises uses of the MFC product, e.g. as an additive for papermaking furnish or injection molded plastic composites.