Abstract:
Multi-piece golf balls having a solid core of at least one layer and cover of at least one layer are provided. At least one of the layers is formed from a thermoplastic polyamide composition, comprising a blend of about 40 to about 99% by weight polyamide and about 1 to about 60% by weight fatty acid amide. Preferably, the ball has a dual core construction. A rubber composition is preferably used to form the outer core layer and the polyamide composition is preferably used to form the inner core. The flex modulus of the polyamide composition is preferably at least 15% greater than the flex modulus of the rubber composition.
Abstract:
A golf ball comprising a core comprising at least one layer that consists of a mixture of a plurality of synthetic flocks and a thermoset rubber composition. The plurality of synthetic flocks has a melting temperature that is greater than a mixing temperature at which the mixture is formed. Additionally, the at least one layer comprises an outer surface having an outer surface hardness of about 80 Shore C or greater and the outer surface hardness is greater than a center hardness of a geometric center of the core by at least 20 Shore C. A cover having at least one layer is disposed about the core. The synthetic flocks may be included in the mixture in an amount of from about 0.5 parts to about 15 parts of the total mixture. Examples of suitable synthetic flocks include nylon, polyester, polypropylene, aramid, or acrylic flocks, or combinations thereof.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from non-foamed thermoset compositions such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-layer golf balls comprising a single- or dual-layer core, an intermediate layer, and an outer cover layer are disclosed. The intermediate layer is formed from a highly neutralized polymer composition and has a surface hardness which is greater than the center hardness of the core and less than the outer surface hardness of the core. The outer surface hardness of the outer cover layer is greater than the outer surface hardness of the core.
Abstract:
A multi-piece golf ball comprising at least one component made of a polybutadiene rubber/ionomer resin blend is provided. The ball preferably contains a dual-core comprising an inner core and surrounding outer core layer. Preferably, the polybutadiene rubber/ionomer resin blend is used to form the outer core layer. The center hardness of the inner core is preferably greater than the outer surface hardness of the outer cover layer. The resulting ball has high resiliency and good impact durability.
Abstract:
A golf ball includes an inner core layer including a thermoplastic highly-neutralized ionomer formed from a copolymer of ethylene and an α,β-unsaturated carboxylic acid, an organic acid or salt thereof, and sufficient cation source to neutralize the acid groups of the copolymer by 80% or greater. The inner core has a geometric center hardness and a surface hardness to define a first hardness gradient having a first slope, S1. An outer core layer is disposed about the inner core and is formed from a homogenous thermoset composition. The outer core layer has an interior hardness and an outer surface hardness to define a second hardness gradient having a second slope, S2. An inner cover layer is disposed about outer core layer and an outer cover layer is disposed about the inner cover layer. A ratio of S2 to S1 is about 1.0 or greater.
Abstract:
Multi-piece golf balls having a solid core and cover are provided. The ball contains a small, heavy inner core and surrounding outer core layer. The inner core preferably contains metal materials such as copper, steel, brass, tungsten, titanium, nickel, iron, tin, and bronze particles dispersed in a thermoset or thermoplastic polymeric matrix. Preferably, the polymeric matrix comprises polybutadiene rubber. The outer surface of the inner core preferably has a non-uniform structure and includes projecting members. For example, the outer surface may contain multiple projecting ribs with gaps located between the ribs. The ball includes a cover surrounding the core structure. The cover may be multi-layered.
Abstract:
The present invention relates to golf balls having at least one layer formed from a very neutralized polymer composition. In particular, the compositions of the invention include at least one acid copolymer and a sufficient amount of cation source to neutralize about 70 percent to about 80 percent of the acid moieties. The invention also relates to methods of making the compositions and golf ball constructions that incorporate the compositions of the invention in at least a portion thereof.
Abstract:
The invention relates to golf balls having at least one layer formed from a highly-neutralized polymer material that has been crosslinked. In particular, the compositions of the invention include a highly-neutralized polymer, at least one crosslinking initiator, and at least one coagent. The invention also relates to methods of making the compositions and golf ball constructions that incorporate the compositions of the invention in at least a portion thereof.
Abstract:
A golf ball having an inner core layer having an outer surface and a geometric center and being formed from a rubber composition. An outer core layer surrounds the inner core to form a dual core. An inner cover layer surrounds the dual core, and includes a high-acid ionomer having a hardness of about 66 to 75 Shore D and an acid content of 16 wt. % or greater. An outer cover layer surrounds the inner cover layer, and includes a polyurethane and having a material hardness of about 38 to 56 Shore D. The inner core layer surface hardness is from 0 Shore C to 10 Shore C lower than the geometric center hardness to define a negative hardness gradient and the outer core layer has a surface hardness at least 10 Shore C greater than the geometric center hardness to define a dual core positive hardness gradient.