Abstract:
The present invention relates to a process that is useful for surface functionalization of a substrate comprising at least one hydroxyl function, in which one or more point regions of said surface are brought into contact with an ionic liquid matrix containing at least one reactive molecule, as it is known, that carries at least one reactive function, under conditions that are suitable for the creation of a covalent bond between said reactive function of the molecule and a hydroxyl function of said surface.
Abstract:
Functionalized copolymers of isoolefins and conjugated diolefins, methods of preparing said copolymers, and their use as compatibilizers are disclosed. The diolefin monomer units of the co-polymer are modified at the C—C double bond along the backbone of the copolymer to include an oxygen containing functional group such as epoxide, ester or alcohol. The functionalized copolymers improve the wettabilty of a non-hydrophilic surface towards hydrophilic polymer and allows for the formation of homogenous layers of the hydrophilic polymers. In particular, the spreading of a hydrophilic polymer on a non-hydrophilic substrate is facilitated by applying the co-polymers as an interfacial layer between the two incompatible materials. The resulting coated substrates exhibit resistance to protein adsorption and cell growth after grafting. The co-polymers are especially suited in the coating of biomedical devices where a high degree of uniformity of the coated surface is required.
Abstract:
The present invention describes a two-sided radiation exposure method including a step of applying a coating or ink composition on a surface of a nonporous substrate. The applied coating or ink composition surface of the nonporous substrate is exposed to radiation one or more times. In addition, a non-applied surface of the nonporous substrate is exposed to radiation one or more times. The two-sided radiation exposure method improves adhesion and/or curing properties of the coating or ink composition applied on the nonporous substrate. The present invention also describes a radiation exposed, nonporous substrate with a coating or ink composition applied on a surface thereof produced by the steps of the above-mentioned method.
Abstract:
An object to be achieved by the present invention is to provide a method capable of forming a multilayer coating film having excellent smoothness, distinctness of image, and chipping resistance, by a 3-coat 1-bake process comprising successively applying an aqueous first colored coating composition, an aqueous second colored coating composition, and a clear coating composition to a substrate, and heat-curing the resulting three layers of the multilayer coating film all at once. The present invention provides a method for forming a multilayer coating film, which employs a 3-coat 1-bake process comprising sequentially applying an aqueous first colored coating composition (X), an aqueous second colored coating composition (Y), and a clear coating composition (Z) on a substrate; and heat-curing the resulting three layers of the multilayer coating film all at once, wherein the aqueous first colored coating composition (X) contains an acrylic resin (A), a curing agent (B), and a urethane resin emulsion (C), and a first colored coating film formed from the aqueous first colored coating composition (X) has a water swelling rate of 100% or less and an organic solvent swelling rate of 300% or less.
Abstract:
The disclosure relates to a superhydrophobic surface. Methods of fabrication are disclosed including laminating a polymer sheet having a surface to a template having a textured surface or a layer of a nanomaterial (e.g., nanoparticles or nanofibers) to convert the surface of the polymer sheet to a hydrophobic surface having a water contact angle of at least about 150°.
Abstract:
A pretreatment fluid for printing media with a pigment ink composition includes a liquid vehicle, at least one polymeric binder selected from the group consisting of acrylic polymers, acrylic copolymers, polyurethanes, salts thereof, and/or combinations thereof; and an associative thickener. The pretreatment fluid has a viscosity of about 10 cps to about 1000 cps and a surface tension of about 16 dynes/cm to about 30 dynes/cm.
Abstract:
A liquid composition and a process for coating the composition onto a surface of a substrate in a substantially oxygen-free atmosphere, under vacuum conditions. The composition comprises one or more components, all of which components do not go into a gas or vapor phase under the vacuum conditions. The composition has an ethylenically unsaturated component composed of an ethylenically unsaturated methacrylate monomer, or a combination of an ethylenically unsaturated methacrylate monomer and an ethylenically unsaturated methacrylate oligomer. The ethylenically unsaturated component is polymerizable or crosslinkable by the application of sufficient electron beam radiation. The composition is substantially absent of ethylenically unsaturated acrylate components, substantially absent of polymerization initiators, and substantially absent of solvents. The composition optionally further comprises one or more polymers without an acrylate functional group and without a methacrylate functional group. The composition optionally further comprises one or more of waxes, pigments, and/or wetting agents.
Abstract:
The invention relates to surfaces with hydrophilic properties and a method for producing such surfaces. Surfaces are provided with hydrophilic properties by applying a coating containing hydrophilic silicic acid by means of the inventive method. Said surfaces can be textile or polymer surfaces, metallic or wooden surfaces. The silicic acid can be permanently connected to the polymer surface or be in the form of a non-fixed coating. The inventive hydrophilic silicic acid is applied in a very simple manner by applying a suspension containing silicic acid particles in a solvent on the corresponding surface, whereupon the solvent is removed or the silicic acid particles are fixed to the surface by means of a carrier. Condensing devices of dehumidifiers, foams or sponges are examples of surfaces that can be provided with the inventive hydrophilic surfaces.
Abstract:
An object to be achieved by the present invention is to provide a method capable of forming a multilayer coating film having excellent smoothness, distinctness of image, and chipping resistance, by a 3-coat 1-bake process comprising successively applying an aqueous first colored coating composition, an aqueous second colored coating composition, and a clear coating composition to a substrate, and heat-curing the resulting three layers of the multilayer coating film all at once. The present invention provides a method for forming a multilayer coating film, which employs a 3-coat 1-bake process comprising sequentially applying an aqueous first colored coating composition (X), an aqueous second colored coating composition (Y), and a clear coating composition (Z) on a substrate; and heat-curing the resulting three layers of the multilayer coating film all at once, wherein the aqueous first colored coating composition (X) contains an acrylic resin (A), a curing agent (B), and a urethane resin emulsion (C), and a first colored coating film formed from the aqueous first colored coating composition (X) has a water swelling rate of 100% or less and an organic solvent swelling rate of 300% or less.
Abstract:
The present invention is directed to a method of treating a reinforcement cord, comprising the steps of A) atomizing a mixture of at least one polymerizable monomer, a halogenated saturated hydrocarbon, and a carrier gas to form an atomized mixture; B) generating an atmospheric pressure plasma from the atomized mixture; and C) exposing the reinforcement cord to the atmospheric pressure plasma under conditions suitable to form a polymer strongly bonded to the tire cord and capable of bonding to rubber.