Abstract:
The present invention relates to a process for preparing a porous material, at least comprising the steps of providing a mixture (I) comprising a composition (A) comprising components suitable to form an organic gel and a solvent (B), reacting the components in the composition (A) in the presence of the solvent (B) to form a gel, and drying of the gel obtained in step b), wherein the composition (A) comprises at least one compound (af) comprising phosphorous and at least one functional group which is reactive towards isocyanates. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material and in vacuum insulation panels, in particular in interior or exterior thermal insulation systems as well as in water tank or ice maker insulation systems.
Abstract:
The present invention relates to a process for preparing a porous material, at least comprising the steps of providing a mixture (I) comprising a composition (A) comprising components suitable to form an organic gel and a solvent (B), reacting the components in the composition (A) in the presence of the solvent (B) to form a gel, and drying of the gel obtained in step b). According to the present invention, the composition (A) comprises a catalyst system (CS) comprising a component (C1) selected from the group consisting of alkali metal and earth alkali metal salts of a saturated or unsaturated carboxylic acid anda component (C2) selected from the group consisting of ammonium salts of a saturated or unsaturated carboxylic acid and no carboxylic acid is used as a component of the catalyst system. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material and in vacuum insulation panels, in particular in interior or exterior thermal insulation systems as well as in water tank or ice maker insulation systems.
Abstract:
The present invention relates to a process for preparing a porous material, at least comprising the steps of providing a mixture (I) comprising a water soluble polysaccharide, at least one compound suitable to react as cross-linker for the polysaccharide or to release a cross-linker for the polysaccharide, and water, and preparing a gel (A) comprising exposing mixture (I) to carbon dioxide at a pressure in the range of from 20 to 100 bar for a time sufficient to form a gel (A), and depressurizing the gel (A). Gel (A) subsequently is exposed to a water miscible solvent (L) to obtain a gel (B), which is dried. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material, for cosmetic applications, for biomedical applications or for pharmaceutical applications.
Abstract:
The present invention relates to an emulsion for producing a microcellular emulsion foam in film form, and a method for producing said microcellular emulsion foam in film form. The emulsion comprises: a) a polymer solution, comprising a first solvent and at least one polymer which is an undissolved solid at 23 °C and 1013 mbar; b) a second solvent, which is immiscible with the first solvent and forms the dispersed phase of the emulsion; wherein the boiling point of the second solvent at 1013 mbar is (i) ≥ the boiling point of the first solvent and (ii) ≤ the melting temperature of the polymer; and wherein the emulsion comprises c) an emulsifier or wherein the polymer is an amphiphilic polymer.
Abstract:
The invention relates to a method for producing an aerogel material with a porosity of at least 0.55 and an average pore size of 10 nm to 500 nm, having the following steps: • a) preparing and optionally activating a sol; • b) filling the sol into a casting mold (10); • c) gelling the sol, whereby a gel is produced, and subsequently aging the gel; at least one of the following steps d) and e), • d) substituting the pore liquid with a solvent; • e) chemically modifying the aged and optionally solvent-substituted gel (6) using a reaction agent; followed by • f) drying the gel, whereby the aerogel material is formed. The casting mold used in step b) is provided with a plurality of channel-forming elements (2) which are designed such that the sol filled into the casting mold lies overall at a maximum distance X from a channel-forming element over a specified minimum length L defined in the channel direction of the elements, with the proviso that X 3.
Abstract:
The present disclosure provides composites comprising an open cell foam and a small pore area material, methods for their preparation, articles of manufacture comprising them and methods for preparing the same.
Abstract:
The present invention relates to a process for preparing a porous material, at least comprising the steps of providing a mixture (I) comprising a water soluble polysaccharide, at least one compound suitable to react as cross-linker for the polysaccharide or to release a cross-linker for the polysaccharide, and water, and preparing a gel (A) comprising exposing mixture (I) to carbon dioxide at a pressure in the range of from 20 to 100 bar for a time sufficient to form a gel (A), and depressurizing the gel (A). Gel (A) subsequently is exposed to a water miscible solvent (L) to obtain a gel (B), which is dried. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material, for cosmetic applications, for biomedical applications or for pharmaceutical applications.
Abstract:
The present invention is core-shell polymer particles comprising a common binder polymer for the core and the shell wherein the core has a porosity and the shell is non-porous The particles have a porosity from 10 to 70 percent.
Abstract:
Disclosed are dried porous crumbs of a hydrogenated block copolymer which is obtained by hydrogenating a block copolymer comprising (a) at least one polymer block composed mainly of aromatic vinyl monomer units and (b) at least one polymer block composed mainly of conjugated diene monomer units, and which has a molecular weight of 70,000 or more. The dried porous crumbs have a water content of 1 % by weight or less and having the capability of absorbing an oil in an amount of 1.0 or more, in terms of the ratio of the weight of an oil, which is absorbed by the dried porous crumbs when the dried porous crumbs are immersed in the oil at 25 DEG C under atmospheric pressure for 1 minute, to the weight of the dried porous crumbs. Also disclosed is a method for producing the same. When the dried porous crumbs are used as a modifier in the production of a molding resin composition from a thermoplastic resin and a liquid additive, such as a softening agent or a silicone oil, a shaped article having an excellent appearance can be produced by molding the molding resin composition.