Abstract:
Compartmentalized chips of at least two chemically similar crystallizable thermoplastic polymers each having a different intrinsic viscosity placed in separate zones are disclosed. These compartmentalized chips exhibit thermal characteristics that are different from the traditional technique of homogeneously combining the two materials into the chip. These compartmentalized chips in their amorphous, crystalline and solid phase polymerized forms exhibit a longer crystallization half time than the homogeneous mixture, thus permitting faster injection cycle times.
Abstract:
There is provided a method for producing resinous particles, containing: melting a mixture containing a binder resin and at least one additive having a melting point lower than T1/2 of the binder resin so as to prepare a molten material; atomizing resinous particles from the molten material in an atmosphere having a temperature higher than Tg of the binder resin and lower than 3 times of T1/2 of the binder resin; retaining the resinous particles in an atmosphere having a temperature higher than Tg of the binder resin, and lower than 1.5 times of T1/2 of the binder resin for 1 s to 15 s; and cooling and solidifying the resinous particles. There is also provided a method for producing resinous particles containing: melting the mixture so as to prepare a molten material; increasing a specific surface of the molten material in an atmosphere having a temperature higher than Tg of the binder resin, and lower than 3 times of T1/2 of the binder resin, so as to form a precursor; retaining the precursor in an atmosphere having a temperature higher than Tg of the binder resin, and lower than 1.5 times of T1/2 of the binder resin for 1 ms to 10 ms; cooling and solidifying the precursor; and atomizing resinous particles from the precursor.
Abstract:
A pulverized thermoplastic resin product such as a pulverized thermoplastic product containing a black pigment, a mixture of a pulverized thermoplastic product containing a colored pigment and a pulverized thermoplastic product containing a colored pigment, or a pulverized thermoplastic product containing two or more different colored pigments can be converted into colored reclaimed resin particles by a method comprising the steps of mixing the pulverized resin product with a white pigment and a black pigment, melting the resulting mixture, and converting the molten mixture into solid particles. The colored reclaimed resin products can be utilized in various field.
Abstract:
A method for producing thermoplastic plastic capable of grasping information concerning the production process even after distribution. In a plurality of production processes including fusion of thermoplastic plastic 90, an information presenting substance 91 is added to the thermoplastic plastic sequentially and dispersed therein in each of the production process, wherein the information presenting substance is associated with information concerning each of the production process and radiates fluorescence upon an irradiation of an electromagnetic wave in a specified wavelength region.
Abstract:
There is provided a method for producing a resin composition which is good in dispersability of a biodegradable resin. This method has a first kneading step of kneading (A) a biodegradable resin and (B) a compound that is reactive with the biodegradable resin (A) to produce a resin composition precursor, and a second kneading step of kneading the resin composition precursor and a polyolefin resin (C).
Abstract:
There is provided a polycarbonate resin composition containing aluminum oxide nanoparticles and being capable of showing good moldability and retention heat stability and combining high transparency and dimensional stability with excellent mechanical properties. The polycarbonate resin composition is characterized by containing an organic acid and aluminum oxide and in that: the resin composition has a melt mass flow rate of 11 g/10 min or higher as measured according to JIS K 7210 under the conditions of a temperature of 280° C., a nominal load of 2.16 Kg and a nozzle dimension UD of 8/2; and a No.2 dumbbell-shaped specimen according to JIS K 7113 formed by heat-press molding the resin composition into a film of 0.2 mm in thickness and cutting the film has a breaking stress of 8 MPa or higher as measured under the conditions of a temperature of 23° C., a humidity of 50% RH and a tensile rate of 50 min/min. The organic acid is preferably an organic sulfonic acid having a carbon number of 8 or greater, more preferably the one containing an aromatic ring in the molecule.
Abstract translation:提供含有氧化铝纳米颗粒的聚碳酸酯树脂组合物,并且能够显示出良好的成型性和保持热稳定性,并且结合高透明度和尺寸稳定性以及优异的机械性能。 聚碳酸酯树脂组合物的特征在于含有有机酸和氧化铝,其中:树脂组合物在温度为280℃的条件下,根据JIS K 7210测定的熔体质量流量为11g / 10min以上 公称负荷2.16千克,喷嘴尺寸UD为8/2; 和根据JIS K 7113的2号哑铃形样品,其通过将树脂组合物热压成型为0.2mm厚的膜而形成,并且切割该膜的断裂应力在8MPa或更高的条件下测量 温度为23℃,湿度为50%RH,拉伸速度为50分钟/分钟。 有机酸优选为碳数为8以上的有机磺酸,更优选分子中含有芳香环的有机磺酸。
Abstract:
A process of preparation of an antimicrobial powder coating composition comprising the steps: a) transforming a natural antimicrobial agent into a salt-form and micronizing the resulting antimicrobial salt into powder, b) mixing at least one of the natural antimicrobial salt together with at least one amino-reactive thermoplastic binder resin, c) subjecting the mixture to a melt compounding process at a temperature in a range of 80 to 230° C., at a residence time period in a range of 5 to 60 seconds, using at least one co-rotating twin-screw extruder with a soft screw design having conveying elements offering a high D/d ratio and having mixing forward kneading block elements, d) cooling the extrudate, and e) micronizing into powder particles. The process forms a powder coating composition containing a natural antimicrobial agent which results in high quality antimicrobial coatings showing a homogeneous distribution of the antimicrobial agent in the coating and a stable antimicrobial activity.
Abstract:
The present invention relates to polymeric articles that are colored using an unformulated heat stable black, blue or violet dye during melt processing, for example a melt spinning process. The process eliminates the need for acid bath dyeing of high melt polymeric materials. The polymeric articles are for example polyester or polyamide.
Abstract:
The present invention relates to a decorative surface covering obtainable by a vulcanisable composition, said composition comprising a first polymer component consisting of styrene butadiene styrene block copolymer (SBS); a second polymer component selected from the group consisting of a random or partially random copolymer of butadiene and styrene (SBR), and nitrile butadiene rubber (NBR); a third polymer component consisting of a high styrene content styrene butadiene copolymer (HSR), a filler, a vulcanisation system and additives selected from the group consisting of processing aids, stabilizers, pigments and compatibilizers.
Abstract:
The present invention relates to a process for the manufacture of structural hybrid thermoplastic composites where organic and inorganic fibres are well dispersed in a thermoplastic matrix. The process comprises defibrillating the organic fibres with or without the presence of surface active agents using a mixer at a high shear and at a temperature lower than the decomposition temperature of organic fibres and melting point of the surface active agents to separate the hydrogen bonded fibres and generate microfibres, followed by blending and dispersion of the organic fibres in the thermoplastic matrix to produce a fibre composite, followed by further blending and dispersion of the fibre composite with inorganic fibres at a low shear to get the moldable hybrid composite, followed by extrusion, injection or compression-injection molding. Low shear mixing maintains the inorganic fibre length. The process produces high performance composite materials having excellent performance properties and are ideally suited for automotive, aerospace, furniture, sports articles, upholstery and other structural and semi-structural applications.