Abstract:
A tire has a coating with a quadlayer or multiple quadlayers, and a method produces the same. In an embodiment, the method for coating a rubber substrate includes exposing the rubber substrate to a first cationic solution to produce a first cationic layer on the rubber substrate. The method also includes exposing the first cationic layer to a first anionic solution to produce a first anionic layer on the first cationic layer. In addition, the method includes exposing the first anionic layer to a second cationic solution to produce a second cationic layer on the first anionic layer. The method further includes exposing the second cationic layer to a second anionic solution to produce a second anionic layer on the second cationic layer. A quadlayer includes the first cationic layer, the first anionic layer, the second cationic layer, and the second anionic layer. The coating includes the quadlayer.
Abstract:
An adhesive article including a pressure sensitive adhesive layer and a release layer in contact with the pressure sensitive adhesive layer. The release layer includes a polymer matrix that includes polymerized (meth)acrylated silicone and a plurality of nanovoids.
Abstract:
A dispersion includes a carbonaceous nanoparticle, a dispersant including a graft polymer having a poly(alkylene glycol) side chain, and a polar solvent. An article coated with the dispersion and a method of making the dispersion are disclosed.
Abstract:
A wholly aromatic liquid crystalline polyester resin compound and a product are disclosed. The disclosed wholly aromatic liquid crystal polyester resin compound includes a wholly aromatic liquid crystal polyester resin and an electroconductive filter.
Abstract:
A system includes a reusable substrate upon which a carbon nanostructure is formed as a carbon nanostructure-laden reusable substrate, a first conveyor system adapted to continuously convey the reusuable substrate through a carbon nanotube catalyst application station and carbon nanostructure growth station, and a second conveyor system adapted to create an interface between a second substrate and the carbon nanostructure-laden reusuable substrate, the interface facilitating transfer of a carbon nanostructure from the carbon nanostructure-laden reusuable substrate to the second substrate. A method includes growing a carbon nanostructure on a reusable substrate, the carbon nanostructure includes a carbon nanotube polymer having a structural morphology comprising interdigitation, branching, crosslinking, and shared walls and transferring the carbon nanostructure to a second substrate to provide a carbon nanostructure-laden second substrate. The method is adapted for continuous carbon nanostructure production on the reusable substrate. A pre-preg includes such a carbon nanostructure.
Abstract:
Embodiments of the present disclosure are directed to sealant compositions comprising a base composition comprising at least one sulfur-containing polymer, and an electrically conductive filler comprising carbon nanotubes and conductive carbon black; and a curing agent composition. The sealant compositions are substantially Ni-free, are particularly useful in lightning strike applications, and exhibit unexpectedly superior tensile elongation and low specific gravity.
Abstract:
A coating composition for metal or refractories includes a polysilazane resin; and one or more additives that alter the thermal conductivity and/or the abrasion resistance of the cured polysilazane resin. The coating composition may be applied to a metal or refractory material substrate and heated to form a ceramic layer on the substrate. The ceramic layer exhibits lower thermal conductivity and increased abrasion resistance.
Abstract:
Disclosed are: a conductive composition containing (A) carbon nanotubes, (B) a conductive polymer, and (C) an onium salt compound; a conductive film using the composition; and a method for manufacturing the conductive film.
Abstract:
The invention relates to a formulation suitable to provide polyurethane, the formulation comprising (a) at least one polyurethane forming mixture; (b) at least one phosphate component selected from the group consisting of ammonium polyphosphate (APP) and melamine phosphates, and mixtures thereof, and; (c) at least one metal or metalloid oxide particle having a maximum particle size of less than 300 mum, wherein the metal or metalloid is selected from the group consisting of Mg, and Al, and wherein said at least one phosphate component is present in an amount ranging from 20 to 45% by weight based on 100% by weight of the formulation.
Abstract:
The present invention relates to an adhesive material, especially an electrically and/or thermally and/or radiation-curing or curable adhesive material, having at least one adhesive constituent and/or adhesive matrix, and moreover having at least one additive in the form of a carbon material, especially based on carbon nanomaterials and/or carbon micromaterials, present in the adhesive constituent and/or adhesive matrix. The invention further relates to a method for producing, activating and/or curing an adhesive material. Finally the invention also relates to a method for adhesively bonding two substrates.