Abstract:
The present invention provides polymer modified aqueous urea formaldehyde resin (UF resin) binder compositions useful in making a treated glass mat, e.g., for roofing shingles, wherein the polymer modifier is an multistage aqueous emulsion acorn copolymer comprising one protuberant polymer stage containing phosphorous acid groups and one or more other polymer stage comprising an addition copolymer incompatible with the protuberant polymer stage, wherein the multistage aqueous emulsion copolymer has a measured Tg of from −60 to 25° C., or, preferably from 31 30 to 12° C. and, further wherein the weight ratio of the total of monomers used to make the one or more other polymer stage to the total amount of monomers used to make the protuberant polymer stage ranges from 3:1 to 50:1, or, preferably, from 3:1 to 30:1 or, more preferably, from 3:1 to 20:1, or, even more preferably, from 8:1 to 12:1.
Abstract:
The present invention relates to a process for preparing an aqueous dispersion of a vinyl acetate polymer comprising the step of polymerizing vinyl acetate under emulsion polymerization conditions in the presence of a chain transfer agent which is a hypophosphite salt or X—R1—SH, where R1 is a C1-C4 alkyl group and X is sulfonate, hydroxyl, sulfate, phosphate, phosphonate, carboxylic acid or a salt thereof, or C1-C3-alkyl carboxylate. The process provides a way of lowering the viscosity of the vinyl acetate polymer at a given solids content.
Abstract:
The invention pertains to a method for emulsion polymerization of at least one fluoromonomer, said method comprising: (i) providing at least one aqueous emulsion comprising at least one surfactant and a monomer mixture [mixture (M)] comprising at least one fluoromonomer [monomer (F)] and optionally at least one additional monomer, and at least one RAFT/MADIX agent; (ii) initiating the polymerization of said monomer mixture in said aqueous emulsion adding at least one radical initiator; (iii) continuing the polymerization by adding additional amounts of said mixture (M) and said RAFT/MADIX agent, until converting the targeted amount of said mixture (M), and (iv) terminating the polymerization and recovering a latex of fluoropolymer [polymer (F)]; wherein the amount of RAFT/MADIX agent is comprised between 0.1 and 0.5% moles, with respect to the total amount of converted monomers of said monomer mixture, and wherein the amount of said RAFT/MADIX agent present in the aqueous emulsion when initiating the polymerization in step (ii) is of at most 50% with respect to the total amount of said RAFT/MADIX agent.
Abstract:
An emulsion composition includes (1) a carboxylated acrylonitrile butadiene elastomer containing an acrylonitrile residue in an amount of 23 to 30 wt % and an unsaturated carboxylic acid residue in an amount of 3 to 8 wt %, and (2) a polyacrylonitrile butadiene elastomer containing an acrylonitrile residue in an amount of 20 to 50 wt % and having a weight average molecular weight (in terms of styrene) of 7,000 to 50,000. The weight ratio of the component (1)/the component (2) is from 70/30 to 90/10.
Abstract:
A silicone emulsion comprises: (A) a silicone compound comprising an anchorage additive for enhancing the adhesion to a polymer film substrate; (B) at least one surfactant; and (C) water. The anchorage additive is the reaction product of (A1) a fluid polyorganosiloxane containing at least one alkenyl group and at least one silanol group with (A2) a hydrolysable silane containing at least one epoxide group. A water-based anchorage additive comprises the silicone emulsion. A silicone release coating composition comprises: (X1) the silicone emulsion; and (X2) at least one curable silicone composition, e.g. a water-based silicone release coating composition. The curable silicone release coating composition may be applied to a sheet-form substrate and cured to form a release-coated layer having good release property and improved rub-off resistance on the substrate.
Abstract:
A method for decreasing the vapour permeability of a water and air barrier treated substrate that includes treating the substrate with a liquid applied, vapour permeable air and water barrier coating composition comprising a cross-linked polysiloxane dispersion composition.
Abstract:
Surfactants (e.g., fluorosurfactants) for stabilizing aqueous or hydrocarbon droplets in a fluorophilic continuous phase are presented. In some embodiments, fluorosurfactants include a fluorophilic tail soluble in a fluorophilic (e.g., fluorocarbon) continuous phase, and a headgroup soluble in either an aqueous phase or a lipophilic (e.g., hydrocarbon) phase. The combination of a fluorophilic tail and a headgroup may be chosen so as to create a surfactant with a suitable geometry for forming stabilized reverse emulsion droplets having a disperse aqueous or lipophilic phase in a continuous, fluorophilic phase. In some embodiments, the headgroup is preferably non-ionic and can prevent or limit the adsorption of molecules at the interface between the surfactant and the discontinuous phase. This configuration can allow the droplet to serve, for example, as a reaction site for certain chemical and/or biological reactions. In another embodiment, aqueous droplets are stabilized in a fluorocarbon phase at least in part by the electrostatic attraction of two oppositely charged or polar components, one of which is at least partially soluble in the dispersed phase, the other at least partially soluble in the continuous phase. One component may provide colloidal stability of the emulsion, and the other may prevent the adsorption of biomolecules at the interface between a component and the discontinuous phase. Advantageously, surfactants and surfactant combinations of the invention may provide sufficient stabilization against coalescence of droplets, without interfering with processes that can be carried out inside the droplets.
Abstract:
Disclosed is a carboxylic acid-modified nitrile-based copolymer latex composition, including 0.1-10 parts by weight of a reactive emulsifier based on 100 parts by weight of a monomer mixture, wherein the monomer mixture includes 40-88 wt % of a conjugated diene-based monomer, 10-50 wt % of an ethylenically unsaturated nitrile monomer and 0.1-10 wt % of an ethylenically unsaturated acid monomer. Also disclosed are a method of preparing the carboxylic acid-modified nitrile-based copolymer latex composition and a latex composition for dip molding including the same. The carboxylic acid-modified nitrile-based copolymer latex composition reduces generation of foam through the use of a reactive emulsifier different from the conventional adsorption/desorption type emulsifier, thereby preventing degradation of the quality of latex caused by foam. In addition, the carboxylic acid-modified nitrile-based copolymer latex composition avoids a need for introducing a defoaming agent for removing foam or maturation process.
Abstract:
Provided is a curable silicone emulsion composition which has comparable curability without using an organotin compound curing catalyst, and for which the post-curing film properties thereof can obtain a comparable hardness, tensile strength, and elongation. A curable silicone emulsion composition characterized by including: (A) 100 parts by mass of an organopolysiloxane which includes a hydroxyl group bonded to at least two silicon atoms per molecule; (B) 0.01-5 parts by mass of an organohydrogenpolysiloxane which includes at least two silicon atom-bonded hydrogen atoms per molecule; (C) 1-10 parts by mass of the reaction product of an amino group-containing organoalkoxysilane and an acid anhydride; (D) 0.1-10 parts by mass of an epoxy group-containing organoalkoxysilane and/or a partial hydrolysis condensation product thereof; (E) 0.5-50 parts by mass of a colloidal silica; (F) 0.1-10 parts by mass of a bismuth compound; and (G) 50-500 parts by mass of water.
Abstract:
There are described q oligomer-polymer composition [optionally substantially free of styrene ( =20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from −50 to 30° C.; and B) 10 to 60 wt-% of a vinyl polymer B with Tg from 50 to 130° C.; where DBI is used to prepare A and/or B and polymer A has from 0.1 to 10 wt-% of at least one acid-functional olefinically unsaturated monomer. Another embodiment is an aqueous polymer coating composition of a vinyl oligomer C of Mw from 1,000 to 150,000 g/mol and an acid value>5 mgKOH/g; and a vinyl polymer D of Mw>=80,000 g/mol and an acid value