Abstract:
The method for manufacturing a stator core includes: a punching step in which magnetic segments are punched out of an electromagnetic steel sheet that is coated with an organic insulating coating; a laminating step in which a laminated body is formed by laminating a predetermined number of the punched magnetic segments; a first preheating step in which a welding position on a wall surface of the laminated body is heated locally from a first end to a second end in a direction of lamination to decompose an organic component in the insulating coating thermally at the welding position; and a first welding step in which the welding position at which the organic component in the insulating coating is decomposed thermally is welded from the first end to the second end in the direction of lamination to interconnect and integrate the laminated magnetic segments.
Abstract:
A method of resin-sealing for a laminated core includes the steps of: holding by sandwiching a core body 11 between a resin injection mold 20 and a supporting mold 21; extruding a molten resin using a plunger 37 from a resin reservoir pot 24 provided in the resin injection mold 20; and resin-sealing the permanent magnets 18 in the magnet insertion holes 16 and 17, wherein a material of the resin reservoir pot 24 of the resin injection mold 20 and a region through which the resin passes from the resin reservoir pot 24 is a superhard material, and wear in the resin injection mold 20 due to a flow of the resin is reduced. With this, a gap between the resin reservoir pot 24 and the resin injection mold 20 due to a difference in thermal expansion is less easily produced.
Abstract:
A split core of the invention is formed from a plurality of magnetic steel sheets that are stacked in a thickness direction and joined together by crimping, and that when provided in plurality, forms a stator core by being arranged in a circle. This split core includes a yoke that extends in a circumferential direction; a tooth that extends radially inward from an inner peripheral side end portion of the yoke; and an abutting portion that is formed on a joining surface of the yoke that joins with a yoke of another adjacent split core. A radial crimping portion that is longer in a radial direction and is positioned to an outer peripheral side of a maximum outer radius of the abutting portion, and that is crimped to a crimping portion of another magnetic steel sheet, is provided on each of the magnetic steel sheets.
Abstract:
The method for manufacturing a stator core includes: a punching step in which magnetic segments are punched out of an electromagnetic steel sheet that is coated with an organic insulating coating; a laminating step in which a laminated body is formed by laminating a predetermined number of the punched magnetic segments; a first preheating step in which a welding position on a wall surface of the laminated body is heated locally from a first end to a second end in a direction of lamination to decompose an organic component in the insulating coating thermally at the welding position; and a first welding step in which the welding position at which the organic component in the insulating coating is decomposed thermally is welded from the first end to the second end in the direction of lamination to interconnect and integrate the laminated magnetic segments.
Abstract:
A stator core capable of improving stator core segments in assemblability, positioning accuracy and rigidity is provided. A stator core includes a plurality of stator core segments, and a yoke part of each stator core segment has a first junction and a second junction joined to other adjacent stator core segments. A protrusion is formed at the first junction, and a recess capable of receiving the protrusion is formed at the second junction. The opening area of the recess increases from a deepest section of the recess to an opening of the recess. In the yoke part, a first caulking site where the stator core segment is caulked in an axial direction is formed on an arc passing through the central part of a radial length of the protrusion and extending in a circumferential direction.
Abstract:
A stator core comprises a laminated part made by stacking a plurality of sheet-like plates and one sheet-like plate into an integral unit in a manner to form dimple portions on both surfaces in the stacking direction thereof, and side plates each having extended portions and nib portions formed on a surface opposite the side where the extended portions are provided and disposed in a manner to sandwich the both surfaces of the laminated part, wherein the laminated part and the side plates are fastened together by inserting the nib portions on the side plates into the dimple portions formed on the laminated part.
Abstract:
A method of manufacturing a laminated stator core includes: forming a band-shaped yoke core sub-piece having a shape that an outer half is developed in a straight line when a yoke portion of the laminated stator core is divided into two halves in the width direction by punching a metal plate; forming an outer laminated yoke body by winding and laminating the band-shaped yoke core sub-piece in a spiral shape and coupling it in a caulking manner; forming an inner yoke-attachment magnetic core sub-piece having an inner yoke sub-portion obtained by dividing the inner half in a unit of magnetic poles when the yoke portion of the laminated stator core is divided into two halves in the width direction, by punching a metal plate; forming an inner yoke-attachment laminated magnetic sub-body by laminating and coupling a predetermined number of the inner yoke-attachment magnetic core sub-pieces to each other in a caulking manner; forming an intermediate assembly in which the inner yoke sub-portions form a ring shape by winding a coil on the inner yoke-attachment laminated magnetic sub-body and connecting the ends of the inner yoke sub-portions in a predetermined number of the inner yoke-attachment laminated magnetic sub-bodies to each other; and coupling the inner yoke-attachment laminated magnetic sub-bodies to the outer laminated yoke body by shrink-fitting the outer laminated yoke body to the outer circumference of the intermediate assembly.
Abstract:
A motor includes a core having a plurality of laminations, which are stacked together and an end-plate provided at an end surface of the core and supporting the core, wherein the end-plate is formed by pressing a hollow material in one direction thereof in order to plastically deform the hollow material in a plate-shape.
Abstract:
Stator core of motor stator is equipped with a segmented core connecting body which connects in an annular shape a segmented core having a structure whereby laminated core plates are connected and held in place in a laminated state. To connect and fix core laminated plates by clamping, first and second dowels formed in each core laminated plate are used to connect and fix common rings by pressure-fitting them to the first and second end faces at either side of the segmented core connecting body, thus integrating the segmented core connecting body. The segmented core connecting body can be integrated with a simple operation, thus significantly reducing the assembly time for the stator core.
Abstract:
An alternator of high quality and high performance includes a rotor, a stator core arranged so as to surround the rotor and having a plurality of axially extending slots arranged at a predetermined circumferential pitch, and a stator having a stator winding fitted into the slots. The stator core includes element iron cores of a hexahedral shape which are deformed to curve, with their adjacent end faces being abutted and bonded to each other, each of the element iron cores being composed of thin steel plates laminated and integrated with one another, with concave and convex portions formed on the thin steel plates being fitting with each other. The concave and convex portions are formed on a borderline between a compressive region of the stator core at an inner diameter side thereof and a tensile region of the stator core at an outer diameter side thereof.