Abstract:
In a method for initializing an image scanner having a scanning module and an automatic document feed (ADF) glass, the scanning module is moved in a forward direction toward the ADF glass to search for a reference mark located within a relatively close proximity to the ADF glass. The scanning module is moved forward to search for a black-white transition in response to the reference mark being located and the scanning module is moved in a backward direction away from the ADF glass in response to the black-white transition being located. The scanning module is stopped when the image sensor of the scanning module is aligned with an origin mark to thereby accurately position the scanning module.
Abstract:
A scanner includes a housing, a transparent platen disposed on the housing for positioning a document, and a calibration pattern formed on a side of the transparent platen. The calibration pattern includes an arc having a first point and a second point. The scanner further includes an optical engine installed inside the housing for scanning the document and the calibration pattern with movement in a first direction, and a control module installed inside the housing for controlling the optical engine to move to a scan start position according to the first point and the second point of the calibration pattern scanned by the optical engine and a radius of curvature of the arc.
Abstract:
Provided is an image reader including: a transparent original mounting plate on which an original is mounted; a support which has an appearance larger than that of the original mounting plate and supports the original mounting plate; a reading unit which optically reads the original placed on the original mounting plate; a movement unit which moves the reading unit in a predetermined direction within a readable area; and a reference location specifying plate having a positioning hole and a reference mark hole, wherein the support has a positioning protrusion within the readable area, the reference location specifying plate is positioned and fixed with respect to the support by inserting the positioning protrusion into the positioning hole, and the reading unit optically detects the location of the reference mark hole and specifies a reference location of an original reading area from the detected location of the reference mark hole.
Abstract:
A document reading apparatus including: a first scanning section that moves in a scanning direction along a document surface, for supporting a first mirror to reflect an image of a document in a direction parallel to the scanning direction; an intermediate scanning section that moves synchronous with the first scanning section, for supporting an intermediate mirror to reflect the image of the document reflected by the first mirror in a direction opposite from an incident direction of the image; a reading section including an imaging sensor for reading the image of a scanned document and a focusing lens for focusing the image of the document reflected by the intermediate mirror on the imaging sensor; a driving wire for pulling the first scanning section in the scanning direction; a supporting pulley for supporting the driving wire at a starting side for scanning or at an ending side for scanning; a position adjustment section capable of adjusting a position of the supporting pulley in its axial direction; a control section for performing such control that the image for adjustment is read by the reading section when the first scanning section is located at a first position and at a second position in the scanning direction, and an adjustment amount of the position adjustment section is calculated based on a readout result of the image; and an output section for outputting the calculated adjustment amount.
Abstract:
An image reading apparatus which enables reduction of time to be taken from a job start instruction to a reading operation start. An automatic document feeder unit feeds an original. An upstream reader reads an image on one side of the original fed by the automatic document feeder unit. A downstream reader is disposed downstream of the upstream reader in an original feeding direction, to read an image on another side of the original. The upstream reader and the downstream reader read images of respective white reference plates, and the image reading apparatus generates correction data for the upstream reader and the downstream reader based on the images of the respective white reference plates read by the upstream reader and the downstream reader.
Abstract:
A cold-cathode ray tube is adopted as an exposure lamp and the exposure lamp is always lit. When the exposure lamp exists at a standby position, a light of the exposure lamp is irradiated at a lower surface side of a control panel. By this irradiation, the liquid crystal display section of the control panel is irradiated in a state of looking bright and clear.
Abstract:
According to an embodiment of the present invention, an image reader comprises a plurality of light receiving elements configured to receive light from an object to be read and to convert the light into image signals. The image reader further comprises means for determining a distance between the object and the plurality of light receiving elements at a plurality of different positions of the object. Moreover the image reader comprises means for selecting at least one correction process portion based at least on the distance between the object and the plurality of light receiving elements. The image reader comprises means for applying the at least one selected correction process to the image signal.
Abstract:
An image scanner includes a scanning unit that scans a white scanning member via a contact glass on one line basis when the image scanner is powered on and outputs image data of the white scanning member, and a determining unit that determines whether at least one of the contact glass and the white scanning member has dirt or a scratch thereon by comparing the image data with reference data on one line basis. The reference data is acquired by scanning the scanning member in a situation that there is no dirt or scratch on the scanning member.
Abstract:
A white-level correcting unit makes an image reading unit read a white reference board, and sets a parameter corresponding to a value read by the image reading unit. A carriage includes a light source that irradiates the document, and moves in a sub-scanning direction with respect to a document to be read. When shifting to an energy-saving mode, the image reading device moves the carriage to a position of the white reference board before entering to the energy-saving mode.
Abstract:
A scanning device includes a first chassis, a second chassis and a calibration mechanism. The first chassis is for scanning one side of a document. The second chassis is for scanning the other side of the document. The second chassis is movably disposed opposite the first chassis. The calibration mechanism is for calibrating the color depth of the scan image. The calibration mechanism includes a calibration sheet and an elastic member. One end of the elastic member is fixed in the scanning device. The second chassis exerts a force on the calibration sheet to generate a relative movement between the calibration sheet and the first chassis. When the second chassis ceases exerting the force, the elastic member releases a resilient force for moving the calibration sheet to a starting position. The first chassis performs dynamic calibration by the relative movement between the first chassis and the calibration sheet.