Abstract:
The invention relates to a catheter device, having a hollow catheter (1) in the catheter cavity (29) of which a moveable shaft (2) is guided, having a proximal coupling device, for detachable coupling of a drive device (11), the coupling device having a coupling cavity (7) which is open towards the drive device and into which the shaft (2) or an extension (5) of the shaft protrudes with a connection element for mechanical coupling of a motor shaft (16), the coupling cavity having a germ barrier (9, 9′) for reducing the pathogenicity of pathogenic substances or microorganisms.
Abstract:
Various “contactless” bearing mechanisms including hydrodynamic and magnetic bearings are provided for a rotary pump as alternatives to mechanical contact bearings. In one embodiment, a pump apparatus includes a pump housing defining a pumping chamber. The housing has a spindle extending into the pumping chamber. A spindle magnet assembly includes first and second magnets disposed within the spindle. The first and second magnets are arranged proximate each other with their respective magnetic vectors opposing each other. The lack of mechanical contact bearings enables longer life pump operation and less damage to working fluids such as blood.
Abstract:
The present invention relates to a heart pump apparatus comprising a turbine pump for assisting the heart of a human patient. The invention is based on the realization that a turbine without a centre axis would improve the capacity of the heart help pump apparatus. The present invention also relates to a turbine pump system for assisting the heart of a human patient. The present invention also relates to operation methods and methods for surgically placing a rotating body of a turbine pump and a stator of a turbine pump in a patient.
Abstract:
A ventricular assist device includes a pump such as an axial flow pump, an outflow cannula connected to the outlet of the pump, and an anchor element. The anchor element is physically connected to the pump, as by an elongate element. The pump is implanted within the left ventricle with the outflow cannula projecting through the aortic valve but desirably terminating short of the aortic arch. The anchor element is fixed to the wall of the heart near the apex of the heart so that the anchor element holds the pump and outflow cannula in position.
Abstract:
In centrifugal pumps 10, 30, 60, 70, and 80 having a rotating centrifugal impeller 14, the flow rate and head of the pumps are estimated on the basis of transverse force applied to the centrifugal impeller 14 during rotation of the centrifugal impeller 14, and evaluation is also made for a circulatory state of the pulsating cardiovascular system. Thereby, it is possible to measure the flow rate and head of the centrifugal pumps and evaluate circulation functions during circulatory assistance by the centrifugal pump.
Abstract:
Various “contactless” bearing mechanisms including hydrodynamic, hydrostatic, and magnetic bearings are provided for a rotary pump as alternatives to mechanical contact bearings. These design features may be combined. In one embodiment, the pump apparatus includes a rotor having a bore, a ring-shaped upper rotor bearing magnet, and a ring-shaped lower rotor bearing magnet. The bearing magnets are concentric with the bore. The lack of mechanical contact bearings enables longer life pump operation and less damage to working fluids such as blood.
Abstract:
A system for pumping blood to assist or assume the cardiac function of a patient is characterized by a blood pump that exhibits a steep performance curve such that only small changes in pump flow occur for large changes in differential pressure across the pump. The pump therefore exhibits flow-limiting characteristics to protect the physiological system against harmful flow rates or pressures. Pump flow may also be limited by controlling the current provided to a driver from a power supply or by suitable restrictions within or external to the pump housing.
Abstract:
A centrifugal fluid pump apparatus includes a control mechanism including an emergency impeller rotation function. The emergency impeller rotation function includes a rotation termination function when the failure detection function detects a failure; impeller magnetic counterforce application function to apply a current to the electromagnet sufficient to overcome the magnetic attraction force of the rotor to the impeller caused by the magnet; hydrodynamic levitation control detection function to detect rotation of the impeller and the rotor by using a motor current monitored by the motor current monitoring function; motor speed control function for increasing the motor speed up to a predetermined value after the hydrodynamic levitation control detection function detects that the hydraulic bearing coupling between the impeller and the rotor has been made; and impeller magnetic counterforce termination function to terminate current to the electromagnet once the predetermined impeller rotation speed is reached.
Abstract:
A magnetically journalled rotational arrangement includes a substantially disc-shaped or ring-shaped rotor and a stator. The stator includes structure for the production of a field which produces a rotation of the rotor. The rotor has structure which produce a unipolar bias magnetization flux which is spatially modulated when viewed in the circumferential direction.
Abstract:
The blood pump (10) comprises an elongate drive portion (11) and a pump portion (12) lengthening the latter. Between the two portions, flow openings (17) are positioned. According to the invention, the flow openings (17) are covered by a screen (24) preventing the blood pump from sucking fast on tissue parts or cardiac valves or from sucking in endogenous tissue and being blocked thereby.