Abstract:
The passage of a container along a conveyor is lubricated by applying to the container or conveyor a lubricating coating that is thermally cured at less than 200° C. or radiation-cured. The mixture can be applied in relatively low amounts and with relatively low or no water content, to provide thin, substantially non-dripping, renewable lubricating films. In contrast to dilute aqueous lubricants, the lubricants of the invention provide dry lubrication of the conveyors and containers, a cleaner conveyor line and reduced lubricant usage, thereby reducing waste, cleanup and disposal problems.
Abstract:
A machine for loading a load carrier (20) such as a pallet with packing units (cardboard boxes, collis etc.), which form a load stack (21) on the load carrier, is presented. The machine includes handling and support mechanism (52–57), that allows a packing unit (15) to be loaded. The handling and support mechanism supports the load from below throughout the operation of loading from a feed device (51) onto the load stack. By virtue of the handling and support mechanism, the packing unit may be deposited at any selectable spatial position on the load stack. It is therefore possible to form an optimized load stack on the load carrier in which the packing units are always supported from below, with the result that the loading is not dependent upon the material quality of the packaging of the packing unit.
Abstract:
A transfer apparatus includes a shuttle depending from an overhead support with a pair of arms for receiving and shifting a specimen carrier from one conveyor to a second conveyor of a dual-conveyor track. The shuttle is operable to retain a specimen carrier along either the first or second conveyor and to release a specimen carrier along either the first or second conveyor. Sensors are located to detect the presence of a specimen carrier at each of the retention locations, and to confirm the release of a specimen carrier from the shuttle along each of the conveyors. A drive motor for moving the shuttle between the retention and release positions is electrically connected to a command module with a processor, for receiving instructions as to the position of the shuttle. The sensors are also connected to the processor to transmit detection data to the processor. A queue is positioned upstream of the shuttle and is electrically connected to the processor. The queue includes retractable shafts, sensors and scanners for selectively retaining, detecting and scanning identification data from a specimen carrier on either conveyor upstream of the shuttle, and transmitting the information to the processor.
Abstract:
A conveyor track drive includes a housing with a first continuous loop conveyor having a portion extending through the housing within a generally horizontal drive plane. The conveyor includes a first segment extending through the housing in the drive plane, then wraps around a portion of a drive sprocket, extends back upstream and around a portion of an idler sprocket and then includes a second segment transversely adjacent the first segment within the drive plane. A guide plate on the housing is positioned over the drive plane with a slot located to guide a specimen carrier from the first segment to the second segment at the point where the two segments are adjacent one another. A motor in the housing drives the drive sprocket to move the conveyor.
Abstract:
A warehousing system includes a container for storing at least one item, a first electronic (e.g. radio frequency identification (RFID)) module associated with the first container, and a controller which wirelessly communicates with first electronic module, for directing a transfer of said at least one item to and/or from said first container. The inventive system may include, for example, a hybrid retail/warehouse system which includes a facility having a shelving area, and a picking area adjacent to the shelving area, and a layout so as to minimize a picking area and a walking distance between a picking area and a shelving area.
Abstract:
A two-axis robot includes a vertical tubular post mounted for rotation about its vertical axis, with a vertically slidable shaft extending through the post. An arm on the upper end of the post projects radially outward and has a gripper assembly thereon with operable jaws for gripping a specimen tube. The robot is positioned between two reference locations, for retrieving a specimen tube from one reference location and transferring it to the other. The reference locations are located along a circle circumscribed by a central vertical axis of the gripper jaws as they swing about the rotational axis of the post.
Abstract:
A machine for loading a load carrier (20) such as a pallet with packing units (cardboard boxes, collis etc.), which form a load stack (21) on the load carrier, comprises handling and support means (52-57), by means of which a packing unit (15) to be loaded is supported from below throughout the operation of loading from a feed device (51) onto the load stack. By virtue of the handling and support means the packing unit may be deposited at any selectable spatial position on the load stack. According to the invention it is therefore possible to form an optimized load stack on the load carrier, wherein the packing units are always supported from below, with the result that the loading is not dependent upon the material quality of the packaging of the packing unit.
Abstract:
A two-axis robot includes a vertical tubular post mounted for rotation about its vertical axis, with a vertically slidable shaft extending through the post. An arm on the upper end of the post projects radially outward and has a gripper assembly thereon with operable jaws for gripping a specimen tube. The robot is positioned between two reference locations, for retrieving a specimen tube from one reference location and transferring it to the other. The reference locations are located along a circle circumscribed by a central vertical axis of the gripper jaws as they swing about the rotational axis of the post.
Abstract:
The passage of a container along a conveyor is lubricated by applying to the container or conveyor a lubricating coating that is thermally cured at less than 200null C. or radiation-cured. The mixture can be applied in relatively low amounts and with relatively low or no water content, to provide thin, substantially non-dripping, renewable lubricating films. In contrast to dilute aqueous lubricants, the lubricants of the invention provide dry lubrication of the conveyors and containers, a cleaner conveyor line and reduced lubricant usage, thereby reducing waste, cleanup and disposal problems.
Abstract:
A magnetic sample rack adapted to support liquid containers is urged along a surface by means of a magnetic conveyor system located beneath the surface. The magnetic conveyor system comprises a plurality of magnetic housings driven by a belt, the magnetic housings including a magnet slideably contained in a closed upper cavity. Magnetic forces emanating from the magnet overcome frictional resistive forces between the sample racks and the operating surface and move the sample racks along input and output lanes defined in the operating surface. Abrupt movements of the sample racks are eliminated because the housing magnet slides smoothly towards the sample rack, secures the sample rack, and pulls the rack along the operating surface as the housings are moved at a steady rate by the belt.