Abstract:
Surfactants (e.g., fluorosurfactants) for stabilizing aqueous or hydrocarbon droplets in a fluorophilic continuous phase are presented. In some embodiments, fluorosurfactants include a fluorophilic tail soluble in a fluorophilic (e.g., fluorocarbon) continuous phase, and a headgroup soluble in either an aqueous phase or a lipophilic (e.g., hydrocarbon) phase. The combination of a fluorophilic tail and a headgroup may be chosen so as to create a surfactant with a suitable geometry for forming stabilized reverse emulsion droplets having a disperse aqueous or lipophilic phase in a continuous, fluorophilic phase. In some embodiments, the headgroup is preferably non-ionic and can prevent or limit the adsorption of molecules at the interface between the surfactant and the discontinuous phase. This configuration can allow the droplet to serve, for example, as a reaction site for certain chemical and/or biological reactions. In another embodiment, aqueous droplets are stabilized in a fluorocarbon phase at least in part by the electrostatic attraction of two oppositely charged or polar components, one of which is at least partially soluble in the dispersed phase, the other at least partially soluble in the continuous phase. One component may provide colloidal stability of the emulsion, and the other may prevent the adsorption of biomolecules at the interface between a component and the discontinuous phase. Advantageously, surfactants and surfactant combinations of the invention may provide sufficient stabilization against coalescence of droplets, without interfering with processes that can be carried out inside the droplets.
Abstract:
There is described an aqueous urethane acrylate copolymer dispersion comprising a) from 10 to 95 wt-% of a polyurethane copolymer, and b) from 5 to 90 wt-% of a polyvinyl copolymer, where vinyl copolymer (b) comprises from 30 parts to 100 parts by weight of biorenewable monomer(s)—such as itaconic acid, itaconate diesters and/or diamides for example dimethyl itaconate (DMI) or dibutyl itaconate (DBI) and where optionally the composition has a residual monomer level of less than 5000 ppm.
Abstract:
There are described q oligomer-polymer composition [optionally substantially free of styrene ( =20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from −50 to 30° C.; and B) 10 to 60 wt-% of a vinyl polymer B with Tg from 50 to 130° C.; where DBI is used to prepare A and/or B and polymer A has from 0.1 to 10 wt-% of at least one acid-functional olefinically unsaturated monomer. Another embodiment is an aqueous polymer coating composition of a vinyl oligomer C of Mw from 1,000 to 150,000 g/mol and an acid value >5 mgKOH/g; and a vinyl polymer D of Mw >=80,000 g/mol and an acid value
Abstract:
Provided is a process for manufacturing a resin composite material having high mechanical strength. The process comprises the steps of: preparing a resin composition comprising a carbon material having a graphene structure, a solvent, and a thermoplastic resin; applying a shearing force to a solid of the resin composition so that the total shearing strain, which is a product of shear rate (s−1) and shear time (s), is 80000 or more either at a temperature lower than the melting point of the thermoplastic resin when the thermoplastic resin is crystalline or at a temperature in the vicinity of Tg of the thermoplastic resin when the thermoplastic resin is amorphous; and kneading the resin composition at a temperature equal to or higher than the boiling point of the solvent to obtain the resin composite material.
Abstract:
There is described a low number average molecular weight (MN 75° C.) copolymer (optionally a solid grade oligomer (SGO)) that comprises (a) at least 20 wt-% of itaconate functional monomer(s), (b) not more than 40% of a hydrophilic monomer, preferably an acid functional monomer(s) in an amount sufficient to achieve an acid value from 65 to 325 mg KOH per g of solid polymer; (c) optionally not more than 70% of other monomers not being either (a) or (b), having a max content of vinyl aromatic monomer(s) of 40 wt-% and/or max content of methacrylate(s) of 40 wt-%; where the weight percentages of monomers (a), (b) and (c) are calculated as a proportion of the total amount of monomers in the copolymer being 100%.
Abstract:
A method for decreasing the vapour permeability of a water and air barrier treated substrate that includes treating the substrate with a liquid applied, vapour permeable air and water barrier coating composition comprising a cross-linked polysiloxane dispersion composition.
Abstract:
The present disclosure provides pre-treatment compositions and related methods. As such, a pre-treatment coating for a print medium can include a an evaporable solvent, a matrix, and a wax. The matrix can include from 5 wt % to 20 wt % of a fixer, from 5 wt % to 20 wt % of a low Tg latex, and from 30 wt % to 80 wt % of a high Tg latex. The wax can include from 5 wt % to 30 wt % of a wax. The weight percentages of the matrix and the wax are based on a total amount present in the pre-treatment coating after removal of solvent.
Abstract:
The present invention provides aqueous self-inspecting wet coatings or films that dry to form translucent to clear weather-resistive barriers on a substrate, preferably a building substrate such as sheathing. The coatings comprise, as a wet film, one or more aqueous emulsion or dispersion polymer that can form a film in use conditions and less than 6% pigment volume concentration (% PVC), of one or more opacifier, one or more extender in amounts up to critical % pigment volume concentration (CPVC), optionally, one or more pigment, and substantially no void, hollow core, or hollow sphere containing pigment. The coatings or films enable one to apply the correct amount of coating to make a weather barrier that dries to a see-through coating or film.
Abstract:
The present invention relates to an oil-in-water emulsion, wherein the oil comprises an acid functional unsaturated polyester which acid functional unsaturated polyester comprises unsaturated dicarboxylic acid units, diol units, units of an emulsifier with HLB value of from 9 to 20 and further comprising chain extender units. The present invention further relates to a fibre mat comprising fibres and a binder comprising such acid functional unsaturated polyester.