Abstract:
An exposure system is provided for illuminating a fine pattern that may have features extending along orthogonal first and second linear directions. An illumination source may be provided having decreased intensity portions at a center and defined along the first and second directions.
Abstract:
An apparatus, a method, and a plate made by the method, e.g., using the apparatus. The apparatus includes a light tunnel of light reflective walls with polygonal cross-section like a kaleidoscope, and a light source, located at one end to produce light radiation to the inside of the light tunnel towards the other end. Light entering the light tunnel towards an inner reflective surface of a wall is reflected off the inner reflective surface so that it can emerge from the other end to cure a plate having photo-curable material thereon.
Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
A method and system of creating one or more waveguides and/or patterning these waveguides to form a 3D microstructure that uses mask and collimated light. In one embodiment, the system includes at least one collimated light source selected to produce a collimated light beam; a reservoir having a photo-monomer adapted to polymerize by the collimated light beam; and a mask having at least one aperture and positioned between the at least one collimated light source and the reservoir. Here, the at least one aperture is adapted to guide a portion of the collimated light beam into the photo-monomer to form the at least one polymer waveguide through a portion of a volume of the photo-monomer.
Abstract:
A method for forming an arbitrary pattern of sub-micron contact holes in a substrate using a combination of interferometric photolithography and optical photolithography with a non-critical mask. The substrate is covered with a photosensitive material and is exposed by a standing wave interference pattern produced by the superposition of two coherent laser beams. Then the substrate is rotated through 90° and exposed by the same pattern. The double exposure produces a regular array of sub-micron unexposed regions which are all potentially holes if developed. The photosensitive material is then covered by a non-critical photomask and a standard light source is used to exposed those areas of the photosensitive material containing unwanted holes. Upon final development, the desired pattern is obtained.
Abstract:
An illumination system for an extreme ultraviolet (EUV) lithography system may include multiple sources of EUV light. The system may combine the light from the multiple sources when illuminating a mask.
Abstract:
An exposure apparatus and method to expose an object with an illumination beam irradiated on a mask from a light source disposes an optical unit between the light source and an optical integrator of an illumination optical system to illuminate the mask with an illumination beam, of which an intensity distribution on a Fourier transform plane with respect to a pattern on the mask has an increased intensity portion apart from the optical axis relative to a portion of the intensity distribution on the optical axis.
Abstract:
A dynamic pressure bearing manufacturing method, comprising the steps of forming a herringbone groove pattern on the outer peripheral surface of a cylindrical mask and a spiral groove pattern on the lower surface of the flange part thereof, inserting the mask in a dynamic pressure bearing and optical fibers into the mask, radiating light from an external light source to the mask through optical fibers to transfer the herringbone groove pattern onto the inner peripheral surface of the dynamic pressure bearing and, at the same time, radiating the light from the upper side of the flange part to transfer the spiral groove pattern onto the upper surface of the dynamic pressure bearing performing development, and forming a herringbone groove on the inner peripheral surface of the bearing by etching and a spiral groove on the upper surface thereof.
Abstract:
A method for forming an arbitrary pattern of sub-micron contact holes in a substrate using a combination of interferometric photolithography and optical photolithography with a non-critical mask. The substrate is covered with a photosensitive material and is exposed by a standing wave interference pattern produced by the superposition of two coherent laser beams. Then the substrate is rotated through 90null and exposed by the same pattern. The double exposure produces a regular array of sub-micron unexposed regions which are all potentially holes if developed. The photosensitive material is then covered by a non-critical photomask and a standard light source is used to exposed those areas of the photosensitive material containing unwanted holes. Upon final development, the desired pattern is obtained.
Abstract:
For allowing processing of a material into an intended three-dimensional configuration having different processed depths while suppressing an influence exerted on a processed configuration by a configuration of a transparent portion, a processing device includes an SR light source 1 for emitting SR light, an X-ray mask having a transparent portion of a predetermined configuration for passing the X-rays emitted from the SR light source 1, and exposure stage 3 for oscillating the X-ray mask and the material relatively to each other in accordance with a movement pattern determined based on the processing configuration of the processing material for moving the X-ray mask and the material relatively to each other and thereby oscillating the region where the material is irradiated with the X-ray passed through the transparent opening.