Abstract:
Various systems and methods can discover asymmetric logical unit (LUN) access (ALU A) preferences and/or state transitions and use those preferences and/or state transitions to control how a host accesses a LUN in an ALUA array. One such method involves detecting a preferred controller for a LUN and then detecting that a current owner controller of the LUN is not the preferred controller. In response, the method can initiate an ownership change from the current owner controller to the preferred controller. Another method involves detecting an initial state of a first controller with respect to a LUN. The method then detects a subsequent state of the first controller with respect to the LUN subsequent to detecting the initial state. The method can then cause a computing device to access the LUN via a second controller, in response to the subsequent state not being the active optimized state.
Abstract:
In a storage server on a storage area network, a media unit manager manages disk space in a manner transparent to the host computers. The media unit manager uses media units corresponding to the physical storage devices on the storage area network to build higher-level media units. The higher level media units can have the attributes of being sliced, concatenated, mirrored, striped, etc. Thus, the host computers need not be aware of the specific physical storage devices themselves, reducing the management and reconfiguration burden on the host computers when storage devices are added to or removed from the storage area network.
Abstract:
Disclosed is a storage system architecture. An Environmental service module (ESM) is coupled to one or more array controllers. The ESM is configured with a central processing unit and one or more assist functions. The assist functions may include nonvolatile memory. This nonvolatile memory may be used for write caching, mirroring data, and/or configuration data. The assist functions, or the ESM, may be controlled by the array controllers using SCSI or RDMA commands.
Abstract:
In a storage server on a storage area network, a media unit manager manages disk space in a manner transparent to the host computers. The media unit manager uses media units corresponding to the physical storage devices on the storage area network to build higher-level media units. The higher level media units can have the attributes of being sliced, concatenated, mirrored, striped, etc. Thus, the host computers need not be aware of the specific physical storage devices themselves, reducing the management and reconfiguration burden on the host computers when storage devices are added to or removed from the storage area network.
Abstract:
Provided is a storage subsystem capable of inhibiting the deterioration in system performance to a minimum while improving reliability and availability. This storage subsystem includes a first controller for controlling multiple drive units connected via multiple first switch devices, and a second controller for controlling the multiple drive units connected via multiple second switch devices associated with the multiple first switch devices. This storage subsystem also includes a connection path that mutually connects the multiple first switch devices and the corresponding multiple second switch devices. When the storage [sub]system detects the occurrence of a failure, it identifies the fault site in the connection path, and changes the connection configuration of the switch device so as to circumvent the fault site.
Abstract:
Network data storage systems and methods allow computers reading and writing data at a plurality of data centers separated by, potentially, large distances to replicate data between sites such that the data is protected from failures, including complete Site failures, while not allowing network latency to significantly impede the performance of read or wπte operations. Continued access to all data is provided even after a single failure of any component of the system or after any complete failure of all equipment regardless of geographic location. Wπte data is replicated synchronously from Active Sites, e g., sites where servers are wπting data to storage resources, to Protection Sites located sufficiently close to Active Sites such that network latency will not significantly impact performance, but sufficiently far apart such that a regional disaster is unlikely to affect both sites. Write data is then asynchronously copied to Active Sites, possibly at distant sites.
Abstract:
A memory subsystem that includes segment level sparing. The memory subsystem includes a cascaded interconnect system with segment level sparing. The cascaded interconnect system includes two or more memory assemblies and a memory bus. The memory bus includes multiple segments and the memory assemblies are interconnected via the memory bus.
Abstract:
A data storage network is provided. The network includes a client connected to the data storage network; a plurality nodes on the data storage network, wherein each data node has two or more RAID controllers, wherein a first RAID controller of a first node is configured to receive a data storage request from the client and to generate RAID parity data on a data set received from the client, and to store all of the generated RAID parity data on a single node of the plurality of nodes.