Abstract:
Methods of forming scroll compressor components are provided. The methods include forming at least one component of a scroll member from a powder metallurgy technique and joining the component with another distinct component via a sinter-brazing process. For example, a baseplate having a spiral scroll involute is joined to a hub via a joint interface having brazing material to form a braze joint with superior quality. At least one component is formed from a powder metal material including carbon and at least one species that reacts with or binds carbon to prevent migration during brazing of the sinter-brazing heat process. Optionally, during the powder metallurgy process, an alloy with a lower concentration of carbon is selected, which may be incorporated into a crystal structure with the species that prevents carbon migration.
Abstract:
A climate control system is provided and may include a compressor, a first heat exchanger in fluid communication with the compressor, a second heat exchanger in fluid communication with the compressor and the first heat exchanger, and a third heat exchanger disposed between the first heat exchanger and the second heat exchanger. A conduit may be fluidly coupled to the third heat exchanger and the compressor and may selectively supply fluid to the compressor. A valve may control a volume of fluid supplied to the compressor via the conduit and a controller may control the valve based on a discharge temperature of the compressor and a super heat temperature of the third heat exchanger.
Abstract:
A compressor may include a compressor housing, an oil sump, an intake chamber, a compression mechanism, a drive shaft, and a first oil passage. The oil sump may be in communication with the compression mechanism. The intake chamber may be defined within the housing. The drive shaft may include first and second ends with an oil inlet passage located therebetween. The first end may be disposed within the intake chamber and may be drivingly engaged with the compression mechanism. The second end may extend outside of the housing for driven engagement external to the housing. The oil inlet passage may be located within the intake chamber. The first oil passage may be disposed within the housing and in communication with the oil sump and the oil inlet passage.
Abstract:
A compressor including a housing defining a suction pressure region and a discharge pressure region includes first and second scroll members forming compression pockets. A first chamber located on the first end plate of the first scroll member includes first and second passages and a first aperture extending therethrough and in communication with the first chamber. The first aperture provides communication between a compression pocket and the first chamber. A piston in the first chamber is axially displaceable to isolate the first passage from communication with the second passage when in first and second positions, prevent communication between the first aperture and the first passage when in the first position, and provide communication between the first aperture and the first passage when in the second position.
Abstract:
A compressor includes a housing, a first scroll member supported within the housing and having a first end plate with a discharge passage, and a second scroll member supported within the housing and having a second end plate with a second spiral wrap extending therefrom and meshingly engaged with the first spiral wrap to form a series of pockets. A first aperture extends through the first end plate and is in communication with a first product of the series of pockets. A modulation assembly axially biases the first scroll member into engagement with the second scroll member when the first aperture is in communication with a suction pressure region of the compressor.
Abstract:
A compressor may include a shell and a housing fixed within the shell. A compression mechanism may be supported by the housing and may include an orbiting scroll member and a non-orbiting scroll member that are meshingly engaged to form a series of compression pockets. A retaining assembly may include an axial retention member and a rotational retention member, each of which is engaged with the non-orbiting scroll member to limit axial translation and rotation of the non-orbiting scroll member relative to the housing.
Abstract:
A system and method for calibrating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. A condenser sensor outputs a condenser signal corresponding to at least one of a sensed condenser pressure and a sensed condenser temperature. An inverter drive modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor. A control module is connected to the inverter drive and determines a measured condenser temperature based on the condenser signal, monitors electric power data and compressor speed data from the inverter drive, calculates a derived condenser temperature based on the electric power data, the compressor speed data, and compressor map data for the compressor, compares the measured condenser temperature with the derived condenser temperature, and updates the compressor map data based on the comparison.
Abstract:
A system and method for protecting a variable speed compressor may include an inverter drive that modulates a frequency of electric power delivered to the compressor to modulate a speed of the compressor. The inverter drive may be cooled by refrigerant and include a temperature sensor that outputs an inverter temperature signal corresponding to an inverter temperature. A control module may receives the inverter temperature signal, compare the inverter temperature with a predetermined threshold, and reduce a compressor operating speed range when the inverter temperature is greater than the predetermined threshold.
Abstract:
A system, compressor, and method that cools an electronics module with a low-pressure refrigerant. The system, compressor, and method utilize a temperature sensor that detects a temperature of the low pressure refrigerant and communicates with the electronics module. Based on the temperature detected by the temperature sensor, the electronics module controls a liquid dry out point of the refrigerant that is used to cool the electronics module.
Abstract:
A refrigeration system having a compressor, a condenser, an evaporator, an accumulator, and electronics for controlling the compressor. The accumulator collects gaseous and liquid refrigerant passing from the evaporator to the compressor. The electronics are mounted to the accumulator to transfer heat from the electronics to the refrigerant located within the accumulator to cool the electronics.