INERTIAL NAVIGATION SYSTEM CAPABLE OF DEAD RECKONING IN VEHICLES

    公开(公告)号:US20200348137A1

    公开(公告)日:2020-11-05

    申请号:US16399842

    申请日:2019-04-30

    Abstract: A device including microelectromechanical systems (MEMS) sensors are used in dead reckoning in conditions where Global Positioning System (GPS) signals or Global Navigation Satellite System (GNSS) signals are lost. The device is capable of tracking the location of the device after the GPS/GNSS signals are lost by using MEMS sensors such as accelerometers and gyroscopes. By calculating a misalignment angle between a forward axis of a sensor frame of the device and a forward axis of a vehicle frame using the data received from the MEMS sensors, the device can accurately calculate the location of a user or the vehicle of the device even without the GPS/GNSS signals. Accordingly, a device capable of tracking the location of the user riding in the vehicle in GPS/GNSS signals absent environment can be provided.

    Air flow measurement using pressure sensors

    公开(公告)号:US10824175B2

    公开(公告)日:2020-11-03

    申请号:US16044333

    申请日:2018-07-24

    Abstract: Devices, systems, and methods are provided for monitoring air flow through a server using differential pressure measurements. The device includes an external pressure sensor, an internal pressure sensor, and a controller that receives the pressures from the external and internal pressure sensors. The external pressure sensor detects air pressure of the ambient air around a server enclosure, the internal pressure sensor detects air pressure through a server enclosure, and the controller calculates a pressure differential between the pressure from the external pressure sensor and the internal pressure sensor. The controller can then generate a signal based on the pressure differential, the signal optionally controlling a cooling fan, generating an interrupt for the server circuitry, or performing some other action.

    Integrated circuit layout wiring for multi-core chips

    公开(公告)号:US10812079B2

    公开(公告)日:2020-10-20

    申请号:US16142627

    申请日:2018-09-26

    Abstract: An integrated circuit system-on-chip (SOC) includes a semiconductor substrate, a plurality of components made up of transistors formed in the substrate, and a plurality of interconnection lines providing electrical connectivity among the components. Use of a channel-less design eliminates interconnection channels on the top surface of the chip. Instead, interconnection lines are abutted to one another in a top layer of metallization, thus preserving 5-10% of chip real estate. Clock buffers that are typically positioned along interconnection channels between components are instead located within regions of the substrate that contain the components. Design rules for channel-less integrated circuits permit feed-through interconnections and exclude multi-fanout interconnections.

    VERTICAL TUNNELING FINFET
    284.
    发明申请

    公开(公告)号:US20200295187A1

    公开(公告)日:2020-09-17

    申请号:US16886193

    申请日:2020-05-28

    Abstract: A tunneling transistor is implemented in silicon, using a FinFET device architecture. The tunneling FinFET has a non-planar, vertical, structure that extends out from the surface of a doped drain formed in a silicon substrate. The vertical structure includes a lightly doped fin defined by a subtractive etch process, and a heavily-doped source formed on top of the fin by epitaxial growth. The drain and channel have similar polarity, which is opposite that of the source. A gate abuts the channel region, capacitively controlling current flow through the channel from opposite sides. Source, drain, and gate terminals are all electrically accessible via front side contacts formed after completion of the device. Fabrication of the tunneling FinFET is compatible with conventional CMOS manufacturing processes, including replacement metal gate and self-aligned contact processes. Low-power operation allows the tunneling FinFET to provide a high current density compared with conventional planar devices.

Patent Agency Ranking