Abstract:
A downhole tool having a throughbore is disclosed for use in a tubular located in a wellbore. The downhole tool has a sealing element configured to seal an annulus between the downhole tool and an inner wall of the tubular; at least one flow path formed in the downhole tool, wherein the flow path is configured to allow fluids in the annulus to flow past the sealing element when the sealing element is in a sealed position; and at least one valve in fluid communication with the flow path and configured to allow the fluids to flow through the flow path in a first direction while preventing the fluids from flowing through the flow path in a second direction. A guard may be installed proximate anchor elements. The guard extends radially beyond an outer diameter of the anchor elements when the anchor elements are in a retracted position.
Abstract:
An electronic control system (10) comprises a first tubular handling tool (20, 30), a sensor (27, 28, 29, 37, 38, 39), and a controller (40). The controller is configured to control actuation of the first tubular handling tool in response to an electronic signal received from the sensor that corresponds to an operational characteristic of the first tubular handling tool. The electronic control system functions as an electronic interlock system to prevent mishandling of a tubular. A method of controlling a tubular handling tool comprises measuring an operational characteristic of the tubular handling tool, communicating the operational characteristic to a controller in the form of an electronic signal, and using the controller to control actuation of the tubular handling tool in response to the measured operational characteristic.
Abstract:
A fill up tool includes a mandrel; a primary sealing member disposed around the mandrel; and a selectively operable secondary sealing member activated by rotation of the mandrel. In another embodiment, the selectively operable secondary sealing member is activated using hydraulic pressure.
Abstract:
Selective and non-selective lock mandrel assemblies include a lock mandrel affixing to a running tool. A collet on the tool holds an inner mandrel in a downhole position in the lock mandrel. For the non-selective assembly, a biased key on the lock mandrel extends into a nipple profile, and shoulders on the key and profile stop further run-in. Operators shear a first shear pin on the running tool by jarring down, and the collet moves and releases its hold on the inner mandrel. Freed, the inner mandrel biased by a spring moves to an uphole position, and a flange fits behind the extended key to lock it in the profile. For the selective assembly, the biased key is held retracted until activated using locator dogs on the running tool to engage a transition when running uphole. Once the lock mandrel is set, operators detach the running tool from it.
Abstract:
Methods and apparatus for installing deepwater completions and performing well intervention from a "non-dedicated" vessel that can perform other duties while not running completions or performing interventions. The system for installing deepwater completions and performing well intervention may comprise a surface pipe handling and deployment package including a horizontally operated rig that may also be operated in a slanted mode. Deepwater completions may be deployed from the non-dedicated vessel via a buoyant horizontal riser (BHR), which may be supported by a submerged buoyant tensioning system (BTS). In this manner, the cost of performing completion or intervention operations may be significantly reduced compared to such operations run from a drilling rig.
Abstract:
A system and method have a choke in fluid communication with a rotating control device. The choke controls flow of drilling mud from the rotating control device to a gas separator during a controlled pressure drilling operation, such as managed pressure drilling (MPD) or underbalanced drilling (UBD). A probe is in fluid communication with the drilling mud between the choke and the gas separator. During operations, the probe evaluates gas in the drilling mud from the well passing from the choke to the gas separator.
Abstract:
A method of forming a wellbore includes providing a drilling assembly comprising one or more lengths of casing and an axially retracting assembly having a first tubular; a second tubular at least partially disposed in the first tubular and axially fixed thereto; and a support member disposed in the second tubular and movable from a first axial position to a second axial position relative to the second tubular, wherein, in the first axial position, the support member maintains the second tubular axially fixed to the first tubular, and in the second axial position, allows the second tubular to move relative to the first tubular; and an earth removal member disposed below the axially retracting assembly. The method also includes rotating the earth removal member to form the wellbore; moving the support member to the second axial position; and reducing a length of the axially retracting assembly.
Abstract:
Embodiments of the present invention generally relate to signal operated tools for milling, drilling, and/or fishing operations. In one embodiment, a mud motor for use in a wellbore includes: a stator; a rotor, the stator and rotor operable to rotate the rotor in response to fluid pumped between the rotor and the stator; and a lock. The lock is operable to: rotationally couple the rotor to the stator in a locked position, receive an instruction signal from the surface, release the rotor in an unlocked position, and actuate from the locked position to the unlocked position in response to receiving the instruction signal.
Abstract:
Embodiments of the invention generally relate to tools and methods for hanging and/or expanding liner strings. In one embodiment, a method of hanging a liner assembly from a previously installed tubular in a wellbore includes running the liner assembly and a setting tool into the wellbore using a run-in string. The setting tool includes an isolation valve and the liner assembly includes a liner hanger and a liner string. The method further includes sending an instruction signal from the surface to the isolation valve, wherein the isolation valve closes in response to the instruction signal and isolates a setting pressure in the setting tool from the liner string; and increasing fluid pressure in the setting tool, thereby setting the liner hanger.
Abstract:
In one embodiment, a tubular handling apparatus is provided with a wedge lock release mechanism that creates a clearance to allow movement by the mandrel having mating wedge surfaces relative to the tubular to release the wedge slips. In another embodiment, a tubular handling apparatus for handling a tubular includes a mandrel; a carrier coupled to the mandrel; a gripping element for engaging the tubular; an engagement member coupled to the carrier for engaging an upper portion of the tubular; and an abutment device adapted to engage the engagement member, wherein a length of the abutment device is adjustable to allow movement of the engagement member.