Abstract:
Provided is graphite group that, when observed with a transmission electron microscope, has a laminated surface spacing of 0.2-1 nm, includes graphite pieces measuring 1.5-10 nm in a direction perpendicular to the laminating direction, the laminating direction of the graphite pieces being irregular.
Abstract:
A method for processing liquids and suspensions using shockwaves that includes providing an apparatus including a shockwaves generation and processing sections and a reaction products dumping tank or reservoir; placing media to be processed into the shockwaves processing section through continuous or intermittent injection; introducing a pressurizing gas into the shockwaves generation section; introducing a detonable mixture into the shockwaves generation section; causing formation of at least one of a shockwave within the shockwaves generation section by igniting the detonable mixture so that at least one of a shockwave propagates from detonation section into shockwaves processing section; utilizing physical, chemical, biological or mechanical effects of the shockwaves in the shockwaves processing section; purging detonation products and pressurizing gas from the shockwaves generation section into reaction products dumping tank; and repeating to achieving a pre-determined degree of processing liquids, liquid suspension, colloids, gels, pastes located in the shockwaves processing section.
Abstract:
Solid materials may be processed using shockwaves produced in a supersonic gaseous vortex. A high-velocity stream of gas may be introduced into a reactor. The reactor may have a chamber, a solid material inlet, a gas inlet, and an outlet. The high-velocity stream of gas may be introduced into the chamber of the reactor through the gas inlet. The high-velocity stream of gas may effectuate a supersonic gaseous vortex within the chamber. The reactor may be configured to facilitate chemical reactions and/or comminution of solid feed material using tensive forces of shockwaves created in the supersonic gaseous vortex within the chamber. Solid material may be fed into the chamber through the solid material inlet. The solid material may be processed within the chamber by nonabrasive mechanisms facilitated by the shockwaves within the chamber. The processed material that is communicated through the outlet of the reactor may be collected.
Abstract:
Method and system for controlled nanodiamond synthesis based on treating of a specially prepared solid carbon source target including carbon containing material in liquid media by irradiation energy beam focused at a predetermined distance from the target surface and having parameters to produce a light-hydraulic effect impacting the target surface and leading to the forming of diamond nanocrystals.
Abstract:
A method for processing liquids and suspensions using shockwaves that includes providing an apparatus including a shockwaves generation section and a shockwaves processing section; placing media to be processed into the shockwaves processing section through continuous or intermittent injection; introducing a pressurizing gas into the shockwaves generation section; introducing a detonable mixture into the shockwaves generation section; causing formation of at least one of a shockwave within the shockwaves generation section by igniting the detonable mixture so that at least one of a shockwave propagates from detonation section into shockwaves processing section; utilizing physical, chemical, biological or mechanical effects of the shockwaves in the shockwaves processing section; venting detonation products from the shockwaves generation section via a pressure relief valve; and repeating to achieving a pre-determined degree of processing liquids, liquid suspension, colloids, gels, pastes located in the shockwaves processing section.
Abstract:
A method for promoting chemical changes in a medium comprising the steps of placing a medium within an electromagnetically resonant structure that permits initiating a spark or a discharge in the medium by means of applying pulsed microwave energy in an electromagnetically resonant structure, the electromagnetically resonant structure being simultaneously mechanically resonant for acoustic or shock waves generated by the spark or discharge caused by the pulsed resonant microwave electromagnetic field; and providing a means to feed material into a reaction chamber within the electromagnetically resonant structure and collecting products of a reaction inside the reaction chamber.
Abstract:
A novel process and apparatus is disclosed for performing chemical reactions. Highly compressed gaseous streams such as H2, CO, CO2, H2O, O2, or CH4 are raised to Mach speeds to form supersonic jets incorporating shockwaves. Two or more such jets are physically collided together to form a localized reaction zone where the energy from the shockwaves causes endothermic reactions wherein the chemical bonds of the reactant gases are broken. Between and among reactants molecular surface interaction and molecular surface chemistry take place. In the ensuing exothermic reactions a desired new chemical product is formed and this product is locked into a lower state of enthalpy (state of energy of formation) through adiabatic cooling by means of a free jet expansion.
Abstract:
Disclosed are a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal; (b) ceramics on the rotating faces of the seal; (c) ceramics on the static faces of seal; (d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and (e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.
Abstract:
The present invention is directed to a process for hydroprocessing of a liquid hydrocarbon feedstock, comprising: (a) mixing liquid, partially vaporized and/or vaporized hydrocarbon feedstock with molecular hydrogen; (b) feeding said mixture into a compression reactor; (c) compressing said mixture to a pressure, a temperature and for a residence time sufficient to: i) thermally crack at least a portion of hydrocarbon molecules in said hydrocarbon feedstock, and ii) react hydrogen in the presence of a hydrogenation catalyst with unstable portions of the cracked molecules, forming a hydroprocessed product; and (d) expanding said mixture to reduce the pressure and temperature thereby reducing subsequent undesirable reactions.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream is further processed to generate larger hydrocarbons in a second reactor. The reactor effluent stream can be processed before the second reactor to remove waste products such as carbon monoxide and nitrogen in the reactor effluent stream.